Ejemplo n.º 1
0
def predict_video(args, image_shape=None):
    if args.video_file_in is None:
        print("for video processing need --video_file_in")
        return
    if args.video_file_out is None:
        print("for video processing need --video_file_out")
        return

    def process_frame(image):
        if image_shape is not None:
            image = scipy.misc.imresize(image, image_shape)
        segmented_image, tf_time_ms, img_time_ms = predict_image(
            sess, model, image, colors)
        return segmented_image

    tf.reset_default_graph()
    with tf.Session(config=session_config(args)) as sess:
        model = fcn32vgg16.FCN32_VGG16(define_graph=False)
        model.load_model(
            sess,
            'trained_model' if args.model_dir is None else args.model_dir)
        print('Running on video {}, output to: {}'.format(
            args.video_file_in, args.video_file_out))
        colors = get_colors()
        input_clip = VideoFileClip(args.video_file_in)
        annotated_clip = input_clip.fl_image(process_frame)
        annotated_clip.write_videofile(args.video_file_out, audio=False)
Ejemplo n.º 2
0
def optimise_graph(args):
    """ optimize frozen graph for inference """
    if args.frozen_model_dir is None:
        print("for optimise need --frozen_model_dir")
        return
    if args.optimised_model_dir is None:
        print("for optimise need --optimised_model_dir")
        return

    print('calling c++ implementation of graph transform')
    os.system('./optimise.sh {}'.format(args.frozen_model_dir))

    # reading optimised graph
    tf.reset_default_graph()
    gd = tf.GraphDef()
    output_graph_file = args.frozen_model_dir + "/optimised_graph.pb"
    with tf.gfile.Open(output_graph_file, 'rb') as f:
        gd.ParseFromString(f.read())
    tf.import_graph_def(gd, name='')
    print("{} ops in the optimised graph".format(len(gd.node)))

    # save model in same format as usual
    shutil.rmtree(args.optimised_model_dir, ignore_errors=True)
    #if not os.path.exists(args.optimised_model_dir):
    #    os.makedirs(args.optimised_model_dir)

    print('saving optimised model as saved_model to {}'.format(
        args.optimised_model_dir))
    model = fcn32vgg16.FCN32_VGG16(define_graph=False)
    tf.reset_default_graph()
    tf.import_graph_def(gd, name='')
    with tf.Session() as sess:
        model.save_model(sess, args.optimised_model_dir)
    shutil.move(args.frozen_model_dir + '/optimised_graph.pb',
                args.optimised_model_dir)
Ejemplo n.º 3
0
def train(args, image_shape):
    config = session_config(args)

    # extract pre-trained VGG weights
    with tf.Session(config=config) as sess:
        var_values = load_trained_vgg_vars(sess)
    tf.reset_default_graph()

    with tf.Session(config=config) as sess:
        # define our FCN
        num_classes = len(cityscape_labels.labels)
        model = fcn32vgg16.FCN32_VGG16(num_classes)

        # variables initialization
        sess.run(tf.global_variables_initializer())
        model.restore_variables(sess, var_values)

        # Create batch generator
        # TODO: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network
        train_batches_fn, num_samples = get_train_batch_generator_cityscapes(args.images_paths,
                                                                             args.labels_paths,
                                                                             image_shape)
        time_str = time.strftime("%Y%m%d_%H%M%S")
        run_name = "/{}_ep{}_b{}_lr{:.6f}_kp{}".format(time_str, args.epochs, args.batch_size, args.learning_rate, args.keep_prob)
        start_time = time.time()

        final_loss = model.train(sess, args.epochs, args.batch_size,
                                 train_batches_fn, num_samples,
                                 args.keep_prob, args.learning_rate,
                                 args.ckpt_dir, args.summary_dir+run_name)

        # Make folder for current run
        output_dir = os.path.join(args.runs_dir, time_str)
        if os.path.exists(output_dir):
            shutil.rmtree(output_dir)
        os.makedirs(output_dir)

        # save training details to text file
        with open(os.path.join(output_dir, "params.txt"), "w") as f:
            f.write('keep_prob={}\n'.format(args.keep_prob))
            f.write('images_paths={}\n'.format(args.images_paths))
            f.write('num_samples={}\n'.format(num_samples))
            f.write('batch_size={}\n'.format(args.batch_size))
            f.write('epochs={}\n'.format(args.epochs))
            f.write('gpu={}\n'.format(args.gpu))
            f.write('gpu_mem={}\n'.format(args.gpu_mem))
            f.write('learning_rate={}\n'.format(args.learning_rate))
            f.write('final_loss={}\n'.format(final_loss))
            duration = time.time() - start_time
            f.write('total_time_hrs={}\n'.format(duration/3600))

        # save model
        """ save trained model using SavedModelBuilder """
        if args.model_dir is None:
            model_dir = os.path.join(output_dir, 'model')
        else:
            model_dir = args.model_dir
        print('saving trained model to {}'.format(model_dir))
        model.save_model(sess, model_dir)
Ejemplo n.º 4
0
def predict_files(args, image_shape):
    tf.reset_default_graph()
    with tf.Session(config=session_config(args)) as sess:
        model = fcn32vgg16.FCN32_VGG16(define_graph=False)
        model.load_model(
            sess,
            'trained_model' if args.model_dir is None else args.model_dir)

        # Make folder for current run
        output_dir = os.path.join(args.runs_dir,
                                  time.strftime("%Y%m%d_%H%M%S"))
        if os.path.exists(output_dir):
            shutil.rmtree(output_dir)
        os.makedirs(output_dir)

        print('Predicting on test images {} to: {}'.format(
            args.images_paths, output_dir))

        colors = get_colors()

        images_pbar = tqdm(glob.glob(args.images_paths),
                           desc='Predicting (last tf call __ ms)',
                           unit='images')
        tf_total_duration = 0.
        img_total_duration = 0.
        tf_count = 0.
        img_count = 0.
        for image_file in images_pbar:
            image = scipy.misc.imresize(scipy.misc.imread(image_file),
                                        image_shape)

            segmented_image, tf_time_ms, img_time_ms = predict_image(
                sess, model, image, colors)

            if tf_count > 0:
                tf_total_duration += tf_time_ms
            tf_count += 1
            tf_avg_ms = int(tf_total_duration /
                            (tf_count - 1 if tf_count > 1 else 1))

            if img_count > 0:
                img_total_duration += img_time_ms
            img_count += 1
            img_avg_ms = int(img_total_duration /
                             (img_count - 1 if img_count > 1 else 1))

            images_pbar.set_description(
                'Predicting (last tf call {} ms, avg tf {} ms, last img {} ms, avg {} ms)'
                .format(tf_time_ms, tf_avg_ms, img_time_ms, img_avg_ms))

            segmented_image = cv2.resize(segmented_image, (2048, 1024),
                                         interpolation=cv2.INTER_NEAREST)
            scipy.misc.toimage(segmented_image, cmin=0, cmax=255,
                               mode='I').save(
                                   os.path.join(output_dir,
                                                os.path.basename(image_file)))
Ejemplo n.º 5
0
def freeze_graph(args):
    # based on https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc
    if args.ckpt_dir is None:
        print("for freezing need --ckpt_dir")
        return
    if args.frozen_model_dir is None:
        print("for freezing need --frozen_model_dir")
        return

    checkpoint = tf.train.get_checkpoint_state(args.ckpt_dir)
    input_checkpoint = checkpoint.model_checkpoint_path
    print("freezing from {}".format(input_checkpoint))
    saver = tf.train.import_meta_graph(input_checkpoint + '.meta',
                                       clear_devices=True)
    graph = tf.get_default_graph()
    input_graph_def = graph.as_graph_def()
    print("{} ops in the input graph".format(len(input_graph_def.node)))

    output_node_names = "predictions/prediction_class"

    # freeze graph
    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint)
        # use a built-in TF helper to export variables to constants
        output_graph_def = tf_graph_util.convert_variables_to_constants(
            sess, input_graph_def, output_node_names.split(","))

    print("{} ops in the frozen graph".format(len(output_graph_def.node)))

    if os.path.exists(args.frozen_model_dir):
        shutil.rmtree(args.frozen_model_dir)

    # save model in same format as usual
    print('saving frozen model as saved_model to {}'.format(
        args.frozen_model_dir))
    model = fcn32vgg16.FCN32_VGG16(define_graph=False)
    tf.reset_default_graph()
    tf.import_graph_def(output_graph_def, name='')
    with tf.Session() as sess:
        model.save_model(sess, args.frozen_model_dir)

    print('saving frozen model as graph.pb (for transforms) to {}'.format(
        args.frozen_model_dir))
    with tf.gfile.GFile(args.frozen_model_dir + '/graph.pb', "wb") as f:
        f.write(output_graph_def.SerializeToString())