def test_stats(): filename = os.path.join(get_test_data_path(), "OpenFace_Test.csv") openface = Fex(filename=filename, sampling_freq=30, detector="OpenFace") openface = openface.read_file() aus = openface.aus() aus.sessions = range(len(aus)) y = aus[[i for i in aus.columns if "_r" in i]] X = pd.DataFrame(aus.sessions) b, t, p, df, res = aus.regress(X, y, mode="ols", fit_intercept=True) assert b.shape == (2, 17) assert res.mean().mean() < 1 clf = openface.predict(X=["AU02_c"], y="AU04_c") assert clf.coef_ < 0 clf = openface.predict(X=openface[["AU02_c"]], y=openface["AU04_c"]) assert clf.coef_ < 0 t, p = openface[["AU02_c"]].ttest_1samp() assert t > 0 a = openface.aus().assign(input="0") b = openface.aus().apply(lambda x: x + np.random.rand(100)).assign( input="1") doubled = pd.concat([a, b]) doubled.sessions = doubled['input'] t, p = doubled.ttest_ind(col="AU12_r", sessions=("0", "1")) assert (t < 0) frame = np.concatenate([ np.array(range(int(len(doubled) / 2))), np.array(range(int(len(doubled) / 2))) ]) assert (doubled.assign(frame=frame).isc(col="AU04_r").iloc[0, 0] == 1)
def test_stats(): filename = os.path.join(get_test_data_path(), "OpenFace_Test.csv") openface = Fex(filename=filename, sampling_freq=30, detector="OpenFace") openface = openface.read_file() aus = openface.aus() aus.sessions = range(len(aus)) y = aus[[i for i in aus.columns if "_r" in i]] X = pd.DataFrame(aus.sessions) b, t, p, df, res = aus.regress(X, y, mode="ols", fit_intercept=True) assert b.shape == (2, 17) assert res.mean().mean() < 1 clf = openface.predict(X=["AU02_c"], y="AU04_c") assert clf.coef_ < 0 clf = openface.predict(X=openface[["AU02_c"]], y=openface["AU04_c"]) assert clf.coef_ < 0 t, p = openface[["AU02_c"]].ttest() assert t > 0