Ejemplo n.º 1
0
def test_fit_and_transform_raise_error_if_df_contains_na(df_normal_dist):
    df_na = df_normal_dist.copy()
    df_na.loc[1, "var"] = np.nan

    # test case 5: when dataset contains na, fit method
    with pytest.raises(ValueError):
        transformer = ArbitraryOutlierCapper(
            min_capping_dict={"var": -0.17486039103044})
        transformer.fit(df_na)

    # test case 6: when dataset contains na, transform method
    with pytest.raises(ValueError):
        transformer = ArbitraryOutlierCapper(
            min_capping_dict={"var": -0.17486039103044})
        transformer.fit(df_normal_dist)
        transformer.transform(df_na)
Ejemplo n.º 2
0
def test_non_fitted_error(df_vartypes):
    with pytest.raises(NotFittedError):
        transformer = ArbitraryOutlierCapper(
            min_capping_dict={"var": -0.17486039103044})
        transformer.transform(df_vartypes)