def test_error_when_inverse_transform_not_implemented(transformer):
    X = fetch_california_housing(as_frame=True).frame
    y = X["MedHouseVal"]
    X = X.drop(["MedHouseVal"], axis=1)

    tr_wrap = SklearnTransformerWrapper(transformer=transformer)
    tr_wrap.fit(X, y)
    X_tr = tr_wrap.transform(X)

    with pytest.raises(NotImplementedError):
        tr_wrap.inverse_transform(X_tr)
def test_selectKBest_all_variables():
    X, y = load_boston(return_X_y=True)
    X = pd.DataFrame(X)

    selector = SklearnTransformerWrapper(transformer=SelectKBest(f_regression,
                                                                 k=5), )

    selector.fit(X, y)

    X_train_t = selector.transform(X)

    pd.testing.assert_frame_equal(X_train_t, X[[2, 5, 9, 10, 12]])
def test_selectFromModel_all_variables():
    X, y = load_boston(return_X_y=True)
    X = pd.DataFrame(X)

    lasso = Lasso(alpha=10, random_state=0)

    sfm = SelectFromModel(lasso, prefit=False)

    selector = SklearnTransformerWrapper(transformer=sfm)

    selector.fit(X, y)

    X_train_t = selector.transform(X)

    pd.testing.assert_frame_equal(X_train_t, X[[1, 9, 11, 12]])
Ejemplo n.º 4
0
def feature_scaling(x_train_input, x_test_input):
    print("\n*****FUNCTION feature_scaling*****")

    global SCALER

    x_train = x_train_input.copy(deep=True)
    x_test = x_test_input.copy(deep=True)

    SCALER = SklearnTransformerWrapper(transformer=MinMaxScaler(),
                                       variables=['Tenure', 'MonthlyCharges'])
    # fit,transform x_train
    SCALER.fit(x_train)
    x_train = SCALER.transform(x_train)

    # transform x_test
    x_test = SCALER.transform(x_test)

    return (x_train, x_test)