Ejemplo n.º 1
0
    def testLearnModel(self):
        k = 4
        tol = 10**-6 
        pca = PrimalPCA(k)
        U, lmbdas = pca.learnModel(self.X)

        #Compute eignvalues manually
        C = numpy.dot(self.X.T, self.X)
        lmbdas2, U2 = scipy.linalg.eig(C)
        inds = numpy.flipud(numpy.argsort(lmbdas2))

        lmbdas2 = lmbdas2[inds]
        U2 = U2[:, inds]

        self.assertTrue( (lmbdas >= 0).all())
        self.assertEquals(lmbdas.shape[0], self.numFeatures )
        self.assertEquals(U.shape[1], self.numFeatures )

        self.assertTrue( numpy.linalg.norm(lmbdas2- lmbdas) <= tol )
        self.assertTrue( numpy.linalg.norm(U2- U) <= tol )

        newX = pca.project(self.X)
        newX2 = numpy.dot(self.X, U2[:, 0:k])

        self.assertTrue( numpy.linalg.norm(newX2 - newX) <= tol )

        #Test orthogonality of U
        self.assertTrue( numpy.linalg.norm(numpy.dot(U.T, U) - numpy.eye(self.numFeatures)) <= tol )

        #Test projecting just k directions
        k = 2
        pca.setK(k)
        newX = pca.project(self.X)
        self.assertTrue( numpy.linalg.norm(newX2[:, 0:k] - newX) <= tol)
Ejemplo n.º 2
0
 def testProject(self):
     k = 2
     pca = PrimalPCA(k)
     U, lmbdas = pca.learnModel(self.X)
   
     newX = pca.project(self.X)
     self.assertEquals(newX.shape[0], self.X.shape[0])
     self.assertEquals(newX.shape[1], k)
Ejemplo n.º 3
0
    def testProject(self):
        k = 2
        pca = PrimalPCA(k)
        U, lmbdas = pca.learnModel(self.X)

        newX = pca.project(self.X)
        self.assertEquals(newX.shape[0], self.X.shape[0])
        self.assertEquals(newX.shape[1], k)
Ejemplo n.º 4
0
    def testLearnModel(self):
        k = 4
        tol = 10**-6
        pca = PrimalPCA(k)
        U, lmbdas = pca.learnModel(self.X)

        #Compute eignvalues manually
        C = numpy.dot(self.X.T, self.X)
        lmbdas2, U2 = scipy.linalg.eig(C)
        inds = numpy.flipud(numpy.argsort(lmbdas2))

        lmbdas2 = lmbdas2[inds]
        U2 = U2[:, inds]

        self.assertTrue((lmbdas >= 0).all())
        self.assertEquals(lmbdas.shape[0], self.numFeatures)
        self.assertEquals(U.shape[1], self.numFeatures)

        self.assertTrue(numpy.linalg.norm(lmbdas2 - lmbdas) <= tol)
        self.assertTrue(numpy.linalg.norm(U2 - U) <= tol)

        newX = pca.project(self.X)
        newX2 = numpy.dot(self.X, U2[:, 0:k])

        self.assertTrue(numpy.linalg.norm(newX2 - newX) <= tol)

        #Test orthogonality of U
        self.assertTrue(
            numpy.linalg.norm(numpy.dot(U.T, U) -
                              numpy.eye(self.numFeatures)) <= tol)

        #Test projecting just k directions
        k = 2
        pca.setK(k)
        newX = pca.project(self.X)
        self.assertTrue(numpy.linalg.norm(newX2[:, 0:k] - newX) <= tol)