Ejemplo n.º 1
0
def findStructElemIDs(elefile, structNodeIDs):
    import sys
    import numpy as n
    import fem_mesh

    header_comment_skips = fem_mesh.count_header_comment_skips(elefile)
    elems = n.loadtxt(elefile,
                      delimiter=',',
                      comments='*',
                      skiprows=header_comment_skips,
                      dtype=[('id', 'i4'), ('pid', 'i4'), ('n1', 'i4'),
                             ('n2', 'i4'), ('n3', 'i4'), ('n4', 'i4'),
                             ('n5', 'i4'), ('n6', 'i4'), ('n7', 'i4'),
                             ('n8', 'i4')])

    structElemIDs = {}

    for i in elems:
        # I hate this hard-coded syntax, but this works (for now)
        j = i.tolist()
        insideStruct = any(x in structNodeIDs for x in j[2:10])
        if insideStruct:
            structElemIDs[i[0]] = True

    if structElemIDs.__len__ == 0:
        sys.exit('ERROR: no structure elements were found')

    return (elems, structElemIDs)
Ejemplo n.º 2
0
def findStructElemIDs(elefile, structNodeIDs):
    """
    Find the elements that contain nodes in structNodeIDs.
    """
    import sys
    import numpy as n
    import fem_mesh

    header_comment_skips = fem_mesh.count_header_comment_skips(elefile)
    elems = n.loadtxt(elefile,
                      delimiter=',',
                      comments='*',
                      skiprows=header_comment_skips,
                      dtype=[('id', 'i4'), ('pid', 'i4'), ('n1', 'i4'),
                             ('n2', 'i4'), ('n3', 'i4'), ('n4', 'i4'),
                             ('n5', 'i4'), ('n6', 'i4'), ('n7', 'i4'),
                             ('n8', 'i4')])

    structElemIDs = {}

    for i in elems:
        # I hate this hard-coded syntax, but this works (for now)
        j = i.tolist()
        insideStruct = any(x in structNodeIDs for x in j[2:10])
        if insideStruct:
            structElemIDs[i[0]] = True

    if len(structElemIDs) == 0:
        sys.exit('ERROR: no structure elements were found')

    return (elems, structElemIDs)
Ejemplo n.º 3
0
def load_nodeIDs_coords(nodefile):
    """
    load in node IDs and coordinates, excluding '*' keyword lines
    """
    import fem_mesh
    import numpy as n
    header_comment_skips = fem_mesh.count_header_comment_skips(nodefile)
    nodeIDcoords = n.loadtxt(nodefile,
                             delimiter=',',
                             comments='*',
                             skiprows=header_comment_skips,
                             dtype=[('id', 'i4'), ('x', 'f4'), ('y', 'f4'),
                                    ('z', 'f4')])
    return nodeIDcoords
Ejemplo n.º 4
0
Archivo: bc.py Proyecto: palfonso01/fem
def load_nodeIDs_coords(nodefile):
    """
    load in node IDs and coordinates, excluding '*' keyword lines
    """
    import fem_mesh
    import numpy as n
    header_comment_skips = fem_mesh.count_header_comment_skips(nodefile)
    nodeIDcoords = n.loadtxt(nodefile,
                             delimiter=',',
                             comments='*',
                             skiprows=header_comment_skips,
                             dtype=[('id', 'i4'), ('x', 'f4'), ('y', 'f4'),
                                    ('z', 'f4')])
    return nodeIDcoords
Ejemplo n.º 5
0
def findStructNodeIDs(args):
    import sys
    import numpy as n
    import math as m
    import fem_mesh

    header_comment_skips = fem_mesh.count_header_comment_skips(args.nodefile)
    nodeIDcoords = n.loadtxt(args.nodefile,
                             delimiter=',',
                             skiprows=header_comment_skips,
                             comments='*',
                             dtype=[('id', 'i4'), ('x', 'f4'),
                                    ('y', 'f4'), ('z', 'f4')])

    structNodeIDs = {}

    sopts = args.sopts

    if args.sphere:
        '''
        sopts is assumed to be a 4 element tuple with the following items:
        sphere center coordinates (x,y,z)
        sphere radius
        '''
        for i in nodeIDcoords:
            nodeRad = n.sqrt(n.power((i[1] - sopts[0]), 2) +
                             n.power((i[2] - sopts[1]), 2) +
                             n.power((i[3] - sopts[2]), 2))
            if nodeRad < sopts[3]:
                structNodeIDs[i[0]] = True

    elif args.layer:
        '''
        sopts is assumed to be a 3 element tuple with the following items:
        dimension for normal to layer (x = 1, y = 2, z = 3)
        layer bounds (min,max)
        '''
        for i in nodeIDcoords:
            if i[sopts[0]] > sopts[1] and i[sopts[0]] < sopts[2]:
                structNodeIDs[i[0]] = True

    elif args.ellipsoid:
        '''
        sopts is assumed to be a 9 element tuple with the following items:
        ellipsoid center coordinates (x,y,z)
        ellipsoid half-axis lengths (a,b,c)
        ellipsoid euler angles (phi,theta,psi) in DEGREES
        '''
        cph = m.cos(m.radians(sopts[6]))    # cos(phi)
        sph = m.sin(m.radians(sopts[6]))    # sin(phi)
        cth = m.cos(m.radians(sopts[7]))    # cos(theta)
        sth = m.sin(m.radians(sopts[7]))    # sin(theta)
        cps = m.cos(m.radians(sopts[8]))    # cos(psi)
        sps = m.sin(m.radians(sopts[8]))    # sin(psi)

        # rotation matrix
        R = n.matrix([[cth * cps, -cph * sps + sph * sth * cps, sph * sps +
                       cph * sth * cps],
                      [cth * sps, cph * cps + sph * sth * sps,
                       -sph * cps + cph * sth * sps],
                      [-sth, sph * cth, cph * cth]])
        # diagonal maxtrix of squared ellipsoid half-axis lengths
        A = n.matrix([[n.power(sopts[3], 2), 0, 0],
                      [0, n.power(sopts[4], 2), 0],
                      [0, 0, n.power(sopts[5], 2)]])
        # A matrix - eigenvalues are a^2,b^2,c^2 (square of half-axis lengths),
        # eigenvectors are directions of the orthogonal principal axes
        A = R.transpose().dot(A).dot(R)

        # locate nodes within ellipsoid
        for i in nodeIDcoords:
            radVec = n.matrix([[i[1] - sopts[0]],
                               [i[2] - sopts[1]],
                               [i[3] - sopts[2]]])
            if radVec.transpose().dot(A.I).dot(radVec) <= 1:
                structNodeIDs[i[0]] = True

    elif args.cube:
        '''
        sopts is assumed to be a 6 element tuple with the following items:
        Location of most-negative corner (x,y,z) Respective cube dimensions
        (x,y,z)
        '''
        for i in nodeIDcoords:
            if i[1] >= sopts[0] and \
                i[1] <= (sopts[0] + sopts[3]) and \
                i[2] >= sopts[1] and \
                i[2] <= (sopts[1] + sopts[4]) and \
                i[3] >= sopts[2] and \
                    i[3] <= (sopts[2] + sopts[5]):
                        structNodeIDs[i[0]] = True

    else:
        sys.exit('ERROR: The specified structure is not defined')

    if len(structNodeIDs) == 0:
        sys.exit('ERROR: no structure nodes were found')

    return structNodeIDs
Ejemplo n.º 6
0
def main():
    import sys
    import numpy as n
    from bc import SortNodeIDs, extractPlane
    import fem_mesh

    fem_mesh.check_version()

    opts = read_cli()
    loadtype = opts.loadtype
    direction = int(opts.direction)
    amplitude = float(opts.amplitude)
    lcid = int(opts.lcid)

    # open the top load file to write
    LOADFILE = open(opts.loadfile, 'w')
    if loadtype == 'disp' or loadtype == 'vel' or loadtype == 'accel':
        LOADFILE.write("*BOUNDARY_PRESCRIBED_MOTION_NODE\n")
    elif loadtype == 'force':
        LOADFILE.write("*LOAD_NODE_POINT\n")
    else:
        sys.exit('ERROR: Invalid loadtype specified (can only be disp, '
                 'force, vel or accel)')

    LOADFILE.write("$ Generated using %s with the following "
                   "options:\n" % sys.argv[0])
    LOADFILE.write("$ %s\n" % opts)

    # load in all of the node data, excluding '*' lines
    header_comment_skips = fem_mesh.count_header_comment_skips(opts.nodefile)
    nodeIDcoords = n.loadtxt(opts.nodefile,
                             delimiter=',',
                             skiprows=header_comment_skips,
                             comments='*',
                             dtype=[('id', 'i4'), ('x', 'f4'),
                                    ('y', 'f4'), ('z', 'f4')])

    # there are 6 faces in these models; we need to (1) find the top face and
    # (2) apply the appropriate loads
    [snic, axes] = SortNodeIDs(nodeIDcoords)

    # extract spatially-sorted node IDs on a the top z plane
    plane = (2, axes[2].max())
    planeNodeIDs = extractPlane(snic, axes, plane)

    # write out nodes on the top z plane with corresponding load values
    # (direction of motion, nodal displacement (accel, vel, etc), temporal load
    # curve ID, scale factor for load curve)
    # TODO: would like to clean this up with a dictionary to associate the
    # prescribed motions with their integer IDs with one statement instead of
    # three conditional statements below
    if loadtype == 'disp':
        writeNodeLoads(LOADFILE, planeNodeIDs, '%i,2,%i,%f' %
                       (direction, lcid, amplitude))
    elif loadtype == 'vel':
        writeNodeLoads(LOADFILE, planeNodeIDs, '%i,0,%i,%f' %
                       (direction, lcid, amplitude))
    elif loadtype == 'accel':
        writeNodeLoads(LOADFILE, planeNodeIDs, '%i,1,%i,%f' %
                       (direction, lcid, amplitude))
    elif loadtype == 'force':
        writeNodeLoads(LOADFILE, planeNodeIDs, '%i,%i,%f' %
                       (direction, lcid, amplitude))

    LOADFILE.write("*END\n")

    # close all of our files open for read/write
    LOADFILE.close()
Ejemplo n.º 7
0
def findStructNodeIDs(nodefile, struct_type, sopts):
    """
    Find node IDs that fall within a specified geometry (sphere, layer, cube,
    ellipsoid).

    INPUTS:     nodefile (nodes.dyn)
                struct_type (sphere, layer, ellipsoid, cube)
                sopts (struct-specific parameters)

    OUTPUTS:    structNodeIDs (dict)
    """
    import sys
    import numpy as n
    import math as m
    import fem_mesh

    header_comment_skips = fem_mesh.count_header_comment_skips(nodefile)
    nodeIDcoords = n.loadtxt(nodefile,
                             delimiter=',',
                             skiprows=header_comment_skips,
                             comments='*',
                             dtype=[('id', 'i4'), ('x', 'f4'),
                                    ('y', 'f4'), ('z', 'f4')])

    structNodeIDs = {}

    if struct_type is 'sphere':
        '''
        sopts is assumed to be a 4 element tuple with the following items:
        sphere center coordinates (x,y,z)
        sphere radius
        '''
        for i in nodeIDcoords:
            nodeRad = n.sqrt(n.power((i[1] - sopts[0]), 2) +
                             n.power((i[2] - sopts[1]), 2) +
                             n.power((i[3] - sopts[2]), 2))
            if nodeRad < sopts[3]:
                structNodeIDs[i[0]] = True

    elif struct_type is 'layer':
        '''
        sopts is assumed to be a 3 element tuple with the following items:
        dimension for normal to layer (x = 1, y = 2, z = 3)
        layer bounds (min,max)
        '''
        for i in nodeIDcoords:
            if i[sopts[0]] > sopts[1] and i[sopts[0]] < sopts[2]:
                structNodeIDs[i[0]] = True

    elif struct_type is 'ellipsoid':
        '''
        sopts is assumed to be a 9 element tuple with the following items:
        ellipsoid center coordinates (x,y,z)
        ellipsoid half-axis lengths (a,b,c)
        ellipsoid euler angles (phi,theta,psi) in DEGREES
        '''
        cph = m.cos(m.radians(sopts[6]))    # cos(phi)
        sph = m.sin(m.radians(sopts[6]))    # sin(phi)
        cth = m.cos(m.radians(sopts[7]))    # cos(theta)
        sth = m.sin(m.radians(sopts[7]))    # sin(theta)
        cps = m.cos(m.radians(sopts[8]))    # cos(psi)
        sps = m.sin(m.radians(sopts[8]))    # sin(psi)

        # rotation matrix
        R = n.matrix([[cth * cps, -cph * sps + sph * sth * cps, sph * sps +
                       cph * sth * cps],
                      [cth * sps, cph * cps + sph * sth * sps,
                       -sph * cps + cph * sth * sps],
                      [-sth, sph * cth, cph * cth]])
        # diagonal maxtrix of squared ellipsoid half-axis lengths
        A = n.matrix([[n.power(sopts[3], 2), 0, 0],
                      [0, n.power(sopts[4], 2), 0],
                      [0, 0, n.power(sopts[5], 2)]])
        # A matrix - eigenvalues are a^2,b^2,c^2 (square of half-axis lengths),
        # eigenvectors are directions of the orthogonal principal axes
        A = R.transpose().dot(A).dot(R)

        # locate nodes within ellipsoid
        for i in nodeIDcoords:
            radVec = n.matrix([[i[1] - sopts[0]],
                               [i[2] - sopts[1]],
                               [i[3] - sopts[2]]])
            if radVec.transpose().dot(A.I).dot(radVec) <= 1:
                structNodeIDs[i[0]] = True

    elif struct_type is 'cube':
        '''
        sopts is assumed to be a 6 element tuple with the following items:
        Location of most-negative corner (x,y,z) Respective cube dimensions
        (x,y,z)
        '''
        for i in nodeIDcoords:
            if i[1] >= sopts[0] and \
                i[1] <= (sopts[0] + sopts[3]) and \
                i[2] >= sopts[1] and \
                i[2] <= (sopts[1] + sopts[4]) and \
                i[3] >= sopts[2] and \
                    i[3] <= (sopts[2] + sopts[5]):
                        structNodeIDs[i[0]] = True

    else:
        sys.exit('ERROR: The specified structure is not defined')

    if len(structNodeIDs) == 0:
        sys.exit('ERROR: no structure nodes were found')

    return structNodeIDs