Ejemplo n.º 1
0
def main():
    n_pontos = 40
    polos = 7
    deg_mec = np.linspace(0, 360, n_pontos)
    deg_ele = deg_mec / polos

    a_flux = np.zeros(n_pontos)
    b_flux = np.zeros(n_pontos)
    c_flux = np.zeros(n_pontos)
    print(a_flux)

    for i in range(n_pontos):
        femm.mi_modifyboundprop("Sliding", 11, deg_ele[i])
        femm.mi_analyse()
        femm.mi_loadsolution()

        a_flux[i] = femm.mo_getcircuitproperties("A")[2]
        b_flux[i] = femm.mo_getcircuitproperties("A")[2]
        c_flux[i] = femm.mo_getcircuitproperties("A")[2]

    flux_1n = np.zeros(n_pontos)
    for i in range(n_pontos):
        femm.mi_modifyboundprop("Sliding", 11, deg_ele[i])
        femm.mi_analyse()
        femm.mi_loadsolution()

        femm.mo_selectblock(1.5, 8.6)
        flux_1n[i] = femm.mo_blockintegral(1) / femm.mo_blockintegral(5)
        femm.mo_clearblock()

    ap = 10e-3 * (10.86 + 10.96) * 1e-3 * np.pi / 14
    bt = flux_1n / ap / 4
    def calcul_energie(self):
        """Calcul de l'energie dans l'entrefer et le fer"""

        femm.mo_selectblock(0, 0)  # On selectionne l'entrefer
        femm.mo_selectblock(0, self.hauteur / 2 -
                            self.l_dent / 4)  # On selectionne le fer
        energie = femm.mo_blockintegral(2) * self.l_active
        femm.mo_clearblock()
        return energie
Ejemplo n.º 3
0
    def energie_stockee(self):
        """Calcul de l'energie dans l'entrefer et le fer"""

        femm.mo_selectblock(0, 0)  # On selectionne l'entrefer
        femm.mo_selectblock(0, self.hauteur / 4)  # On selectionne le fer
        energie = femm.mo_blockintegral(
            2) * self.l_active  # 2 : Magnetic field energy
        femm.mo_clearblock()
        return energie
Ejemplo n.º 4
0
def comp_FEMM_torque(FEMM_dict, sym=1):
    """Compute the torque of the current FEMM simulation result
    """

    # Select rotor groups
    mo_seteditmode("area")
    mo_groupselectblock(FEMM_dict["groups"]["GROUP_RC"])
    mo_groupselectblock(FEMM_dict["groups"]["GROUP_RH"])
    mo_groupselectblock(FEMM_dict["groups"]["GROUP_RW"])
    # sym = 2 => Only half the machine
    return sym * mo_blockintegral(22)
Ejemplo n.º 5
0
def get_slipfreq_torque():
    # call this after mi_analyze
    femm.mi_loadsolution()

    # Physical Amount on the Rotor
    femm.mo_groupselectblock(100)  # rotor iron
    femm.mo_groupselectblock(101)  # rotor bars
    # Fx = femm.mo_blockintegral(18) #-- 18 x (or r) part of steady-state weighted stress tensor force
    # Fy = femm.mo_blockintegral(19) #--19 y (or z) part of steady-state weighted stress tensor force
    torque = femm.mo_blockintegral(
        22)  #-- 22 = Steady-state weighted stress tensor torque
    freq = femm.mo_getprobleminfo()[1]
    femm.mo_clearblock()
    femm.mo_close()

    return freq, torque
Ejemplo n.º 6
0
    def computedLz(self, ite=0, rType="linear"):
        """Compute dLz

        Compute the variation of inductance while the
        projectile moves on the axis. If ite is zero,
        some guess is made about the number of iterations required
        for decent approximation.
        By default the projectile is moved linearly, but it
        is possible to set the movement type to tchebychev in order
        to minimize the Runge phenomenom. However not all the code
        is compatible with it.

        Rather than computing the variation of inductance, we compute
        the force on the projectile and correct it (explanations are available
        somewhere on this git :) ).

        Keyword Arguments:
            ite {number} -- number of steps (default: {0})
            rType {str} -- type of movement, linear or tchebychev (default: {"linear"})
        """
        self.deleteProjectile()
        self.drawProjectile()
        (pas, pos, ite) = self._compute_range(ite, rType)
        force = numpy.zeros(ite)
        femm.mi_selectgroup(1)
        femm.mi_movetranslate2(0, pos[0], 4)
        for i in tqdm(range(ite // 2), disable=self.bHide):
            femm.mi_analyze()
            femm.mi_loadsolution()
            femm.mo_groupselectblock(1)
            force[i] = femm.mo_blockintegral(19)
            force[ite - i - 1] = -force[i]
            femm.mi_selectgroup(1)
            femm.mi_movetranslate2(0, pas[i], 4)
        self.dLz = 2 * force / self._i0**2
        self.dLz_z = pos * 10**-3
        self.dLz_nyquist = 1 / (2 * numpy.mean(pas) * 10**-3)
Ejemplo n.º 7
0
def calc_inductance(tg, currents, inductances=(None, None), **kwargs):
    ''' Setup of magneto-static problem in femm to calculate inductance and
    resistance of planar transformer.

    Args:
        tg (:obj:'TransformerGeometry'): tg contains all geometry information
        of the transformer.
        currents (list of float): currents in the primary and secondary side
        circuits on the form [I_prim, I_sec].
        inductances (list of float): self-inductances of the primary and
        secondary side circuits on the form [L_prim, L_sec]. Used to calculate
        mutual inductance.

    Returns:
        (inductance, resistance): calculated self or mutual inductance and
        equivalent series resistance of either primary or secondary circuit.
    '''

    etiquettes_dict = {}  # Dictionary to store coordinates of nodes

    # initialitiation of the magneto-static problem
    boundary_radius = 2 * tg.radius_dielectric
    initial_setup(boundary_radius, currents, **kwargs)

    # draw geometry and add block labels
    add_conductors(tg, etiquettes_dict)
    add_pcbs(tg)
    add_isolation(tg)
    add_block_labels(tg, etiquettes_dict)

    # mi zoomnatural()
    # From manual: zooms to a “natural” view with sensible extents.
    femm.mi_zoomnatural()

    # Saving geometry file
    femm.mi_saveas('inductance_transformer.fem')

    # Meshing and analysis
    # From manual: Note that it is not necessary to run mesh before performing
    # an analysis, as mi_analyze() will make sure the mesh is up to date before
    # running an analysis.

    # mi analyze(flag)
    # From manual: runs fkern to solve the problem. The flag parameter controls
    # whether the fkern window is visible or minimized. For a visible window,
    # either specify no value for flag or specify 0. For a minimized window,
    # flag should be set to 1.
    femm.mi_analyze(1)

    # Post-processing
    femm.mi_loadsolution()

    # mo_seteditmode(mode)
    # From manual: Sets themode of the postprocessor to point, contour, or area
    # mode. Valid entries for mode are "point", "contour", and "area".
    femm.mo_seteditmode('area')

    # mo_blockintegral(type)
    # From manual: Calculate a block integral for the selected blocks
    # Type Definition
    # 0 A · J
    # 1 A
    # 2 Magnetic field energy
    # 3 Hysteresis and/or lamination losses
    # 4 Resistive losses
    # 5 Block cross-section area
    # 6 Total losses
    # 7 Total current
    # 8 Integral of Bx (or Br) over block
    # 9 Integral of By (or rBz) over block
    # 10 Block volume
    # ...

    # mo_getcircuitproperties("circuit")
    # From manual: Used primarily to obtain impedance information associated
    # with circuit properties. Properties are returned for the circuit property
    # named "circuit". Three values are returned by the function. In order,
    # these results are:
    # – current Current carried by the circuit
    # – volts Voltage drop across the circuit
    # – flux_re Circuit’s flux linkage

    # mo_groupselectblock(n)
    # From manual: Selects all the blocks that are labeled by block labels
    # that are members of group n. If no number is specified (i.e.
    # mo_groupselectblock() ), all blocks are selected.

    # Calculate the inductance of the circuit with non-zero current. If both
    # currents are given, we calculate the mutual inductance.
    L1, L2 = inductances
    if (currents[0] > 0) and (currents[1] == 0):
        circ = femm.mo_getcircuitproperties('phase_prim')
        resistance = circ[1].real
        inductance = abs(circ[2] / circ[0])
    elif (currents[0] == 0) and (currents[1] > 0):
        circ = femm.mo_getcircuitproperties('phase_sec')
        resistance = circ[1].real
        inductance = abs(circ[2] / circ[0])
    else:
        femm.mo_groupselectblock()
        # axisymmetric problem, integral is multiplied by 2
        Wm = femm.mo_blockintegral(2) * 2
        inductance = ((Wm - 0.5 *
                       (L1 * currents[1]**2 + L2 * currents[0]**2)) /
                      (currents[0] * currents[1]))
        resistance = 0
        femm.mo_clearblock()

    if kwargs.get('close') is True:
        femm.closefemm()

    return (inductance, resistance)
Ejemplo n.º 8
0
def write_Torque_and_B_data_to_file(str_rotor_position, rotation_operator):
    # call this after mi_analyze
    femm.mi_loadsolution()

    # Physical Amount on the Rotor
    femm.mo_groupselectblock(100)  # rotor iron
    femm.mo_groupselectblock(101)  # rotor bars
    Fx = femm.mo_blockintegral(
        18)  #-- 18 x (or r) part of steady-state weighted stress tensor force
    Fy = femm.mo_blockintegral(
        19)  #--19 y (or z) part of steady-state weighted stress tensor force
    torque = femm.mo_blockintegral(
        22)  #-- 22 = Steady-state weighted stress tensor torque
    femm.mo_clearblock()
    # write results to a data file (write to partial files to avoid compete between parallel instances)
    handle_torque.write("%s %g %g %g\n" % (str_rotor_position, torque, Fx, Fy))

    # Field Amount of 1/4 model (this is valid if we presume the suspension two pole field is weak)
    number_of_elements = femm.mo_numelements()
    stator_Bx_data = []
    stator_By_data = []
    stator_Area_data = []
    rotor_Bx_data = []
    rotor_By_data = []
    rotor_Area_data = []
    # one_list = []
    for id_element in range(1, number_of_elements + 1):
        _, _, _, x, y, area, group = femm.mo_getelement(id_element)
        if y > 0 and x > 0:
            if group == 10:  # stator iron
                # 1. What we need for iron loss evaluation is the B waveform at a fixed point (x,y).
                #    For example, (x,y) is the centeroid of element in stator tooth.
                Bx, By = femm.mo_getb(x, y)
                stator_Bx_data.append(Bx)
                stator_By_data.append(By)
                stator_Area_data.append(area)

            if group == 100:  # rotor iron
                # 2. The element at (x,y) is no longer the same element from last rotor position.
                #    To find the exact element from last rotor position,
                #    we rotate the (x,y) forward as we rotate the model (rotor), get the B value there: (x,y)*rotation_operator, and correct the (Bx,By)/rotation_operator
                complex_new_xy = (x + 1j * y) * rotation_operator
                Bx, By = femm.mo_getb(complex_new_xy.real, complex_new_xy.imag)
                complex_new_BxBy = (Bx + 1j * By) * rotation_operator
                rotor_Bx_data.append(complex_new_BxBy.real)
                rotor_By_data.append(complex_new_BxBy.imag)
                rotor_Area_data.append(area)

            # one_list.append(sqrt(Bx**2 + By**2))
            # one_list.append(area)
    # option 1
    handle_stator_B_data.write(str_rotor_position + ',' + ','.join([
        '%g,%g,%g' % (Bx, By, A)
        for Bx, By, A in zip(stator_Bx_data, stator_By_data, stator_Area_data)
    ]) + '\n')
    handle_rotor_B_data.write(str_rotor_position + ',' + ','.join([
        '%g,%g,%g' % (Bx, By, A)
        for Bx, By, A in zip(rotor_Bx_data, rotor_By_data, rotor_Area_data)
    ]) + '\n')

    # option 2: one_list
    # handle_B_data.write(str_rotor_position + ',' + ','.join(['%g'%(B) for B in B_data ]) + ','.join(['%g'%(A) for A in Area_data ]) + '\n')

    # numpy is slower than open().write!!!
    # tic = time()
    # # savetxt(handle_B_data, c_[one_list])
    # savetxt(handle_B_data, one_list)
    # toc = time()
    # print toc - tic, 's\n\n'

    femm.mo_close()
Ejemplo n.º 9
0
 femm.opendocument(output_file_name + '.fem')
 # femm.callfemm_noeval('mi_smartmesh(0)')
 try:
     # femm.mi_createmesh() # [useless]
     femm.mi_analyze(1)  # None for inherited. 1 for a minimized window,
     # print '[debug]', deg_per_step*i*number_of_instances, 'deg'
     # rotor_position = deg_per_step*i*number_of_instances / 180. * pi
     # write_Torque_and_B_data_to_file(output_file_name[-4:], exp(1j*rotor_position)) # this function is moved to FEMM_Solver.py as keep...
     if True:
         # call this after mi_analyze
         femm.mi_loadsolution()
         # Physical Amount on the Rotor
         femm.mo_groupselectblock(100)  # rotor iron
         femm.mo_groupselectblock(101)  # rotor bars
         Fx = femm.mo_blockintegral(
             18
         )  #-- 18 x (or r) part of steady-state weighted stress tensor force
         Fy = femm.mo_blockintegral(
             19
         )  #--19 y (or z) part of steady-state weighted stress tensor force
         torque = femm.mo_blockintegral(
             22)  #-- 22 = Steady-state weighted stress tensor torque
         femm.mo_clearblock()
         # write results to a data file (write to partial files to avoid compete between parallel instances)
         handle_torque.write(
             "%s %g %g %g\n" %
             (output_file_name[-4:], torque, Fx,
              Fy))  # output_file_name[-4:] = str_rotor_position
         # close post-process
         femm.mo_close()
 except Exception as error:
Ejemplo n.º 10
0
z = np.linspace(z_start, z_end, num_points)
fz = []

# START OF MOTION
counter = 0  # Initialize a counter because I was too lazy to get the index in the for loop
for z_loc in z:
    mag_y_loc = z_loc
    # Only start after the initial position has been used.
    if (counter > 0):
        femm.mi_movetranslate(0, dz)

    femm.mi_analyze(0)
    femm.mi_loadsolution()
    femm.mi_selectgroup(3)
    femm.mo_selectblock(0, mag_y_loc)
    fz.append(femm.mo_blockintegral(21) * 2)

    counter = counter + 1
# END OF MOTION

# POST-PROCESSING
femm.mi_saveas("final.fem")  # Save the final simulation step
max_loc = fz.index(max(fz))  # Find the location of maximum force

plt.figure(1)
plt.plot(z - z[max_loc], fz)
plt.show()
plt.xlabel('z (in)')
plt.ylabel('F [N]')

# Save plot data to text file
Ejemplo n.º 11
0
import femm
import matplotlib.pyplot as plt

femm.openfemm()
femm.opendocument("coilgun.fem")
femm.mi_saveas("temp.fem")
femm.mi_seteditmode("group")
z = []
f = []
for n in range(0, 16):
    femm.mi_analyze()
    femm.mi_loadsolution()
    femm.mo_groupselectblock(1)
    fz = femm.mo_blockintegral(19)
    z.append(n * 0.1)
    f.append(fz)
    femm.mi_selectgroup(1)
    femm.mi_movetranslate(0, -0.1)
femm.closefemm()
plt.plot(z, f)
plt.ylabel('Force, N')
plt.xlabel('Offset, in')
plt.show()
Ejemplo n.º 12
0
for coil_origin in coil_origins:
    coil = Rectangle(coil_origin.x, coil_origin.y, Params.D4, Params.D3)
    coil.assign_material(Params.CoilMaterial, Params.Turns, 'Circuit')

# Now, the finished input geometry can be displayed.
femm.mi_zoomnatural()

# We have to give the geometry a name before we can analyze it.
femm.mi_saveas('feladat2.fem')

move_vectors = [Point(0, 0)]  # do it once without moving
for previous, current in zip(Params.core_gap, Params.core_gap[1:]):
    move_vectors.append(Point(0, previous - current))

forces = {}
for core_gap, move_vector in zip(Params.core_gap, move_vectors):
    bottom_part.move(move_vector.x, move_vector.y)
    femm.mi_analyze()
    femm.mi_loadsolution()
    bottom_part.select_block_for_anal()
    forces[core_gap] = femm.mo_blockintegral(19)  # 19 means force

    (current, voltage, flux_linkage) = femm.mo_getcircuitproperties('Circuit')
    inductance = flux_linkage / current

    print(
        f'In case of {core_gap:.1f} cm gap, force is {forces[core_gap]:.2f} N; inductance is {inductance*1000:.2f} mH'
    )

femm.closefemm()
Ejemplo n.º 13
0
def postGetTorque(group):
    femm.mo_groupselectblock(group)
    T = femm.mo_blockintegral(22)
    femm.mo_clearblock()
    return T