Ejemplo n.º 1
0
    def test_available(self):
        test_dir = test_subdir_create("targets_test_available")
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl, TARGET_TYPE_SCIENCE, tgoff)
        tgoff += nscience
        nstd = sim_targets(input_std, TARGET_TYPE_STANDARD, tgoff)
        tgoff += nstd
        nsky = sim_targets(input_sky, TARGET_TYPE_SKY, tgoff)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky, TARGET_TYPE_SUPPSKY, tgoff)

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)
        load_target_file(tgs, input_suppsky)
        print(tgs)

        # Test access
        ids = tgs.ids()
        tt = tgs.get(ids[0])
        tt.ra += 1.0e-5
        tt.dec += 1.0e-5
        tt.subpriority = 0.99

        # Compute the targets available to each fiber for each tile.
        hw = load_hardware()
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)
        # Precompute target positions
        tile_targetids, tile_x, tile_y = targets_in_tiles(hw, tgs, tiles)
        tgsavail = TargetsAvailable(hw, tiles, tile_targetids, tile_x, tile_y)

        # Free the tree
        del tile_targetids, tile_x, tile_y

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        return
Ejemplo n.º 2
0
    def test_science(self):
        set_matplotlib_pdf_backend()
        import matplotlib.pyplot as plt
        test_dir = test_subdir_create("qa_test_science")
        log_file = os.path.join(test_dir, "log.txt")

        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        # For this test, we will use just 2 science target classes, in order to verify
        # we get approximately the correct distribution
        sdist = [(3000, 1, 0.25, "QSO"), (2000, 1, 0.75, "ELG")]
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               0,
                               density=self.density_science,
                               science_frac=sdist)

        log_msg = "Simulated {} science targets\n".format(nscience)

        tgs = Targets()
        load_target_file(tgs, input_mtl)

        # Read hardware properties
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state))
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)

        # Precompute target positions
        tile_targetids, tile_x, tile_y = targets_in_tiles(hw, tgs, tiles)
        # Compute the targets available to each fiber for each tile.
        tgsavail = TargetsAvailable(hw, tiles, tile_targetids, tile_x, tile_y)

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Pass empty map of STUCK positioners that land on good sky
        stucksky = {}

        # Create assignment object
        asgn = Assignment(tgs, tgsavail, favail, stucksky)

        # First-pass assignment of science targets
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Redistribute
        asgn.redistribute_science()

        write_assignment_fits(tiles, asgn, out_dir=test_dir, all_targets=True)

        tile_ids = list(tiles.id)

        merge_results([input_mtl],
                      list(),
                      tile_ids,
                      result_dir=test_dir,
                      copy_fba=False)

        # FIXME:  In order to use the qa_targets function, we need to know the
        # starting requested number of observations (NUMOBS_INIT).  Then we can use
        # that value for each target and compare to the number actually assigned.
        # However, the NUMOBS_INIT column was removed from the merged TARGET table.
        # If we are ever able to reach consensus on restoring that column, then we
        # can re-enable these tests below.
        #
        # qa_targets(
        #     hw,
        #     tiles,
        #     result_dir=test_dir,
        #     result_prefix="fiberassign-"
        # )
        #
        # # Load the target catalog so that we have access to the target properties
        #
        # fd = fitsio.FITS(input_mtl, "r")
        # scidata = np.array(np.sort(fd[1].read(), order="TARGETID"))
        # fd.close()
        # del fd
        #
        # # How many possible positioner assignments did we have?
        # nassign = 5000 * len(tile_ids)
        #
        # possible = dict()
        # achieved = dict()
        #
        # namepat = re.compile(r".*/qa_target_count_(.*)_init-(.*)\.fits")
        # for qafile in glob.glob("{}/qa_target_count_*.fits".format(test_dir)):
        #     namemat = namepat.match(qafile)
        #     name = namemat.group(1)
        #     obs = int(namemat.group(2))
        #     if obs == 0:
        #         continue
        #     fd = fitsio.FITS(qafile, "r")
        #     fdata = fd["COUNTS"].read()
        #     # Sort by target ID so we can select easily
        #     fdata = np.sort(fdata, order="TARGETID")
        #     tgid = np.array(fdata["TARGETID"])
        #     counts = np.array(fdata["NUMOBS_DONE"])
        #     avail = np.array(fdata["NUMOBS_AVAIL"])
        #     del fdata
        #     fd.close()
        #
        #     # Select target properties.  BOTH TARGET LISTS MUST BE SORTED.
        #     rows = np.where(np.isin(scidata["TARGETID"], tgid, assume_unique=True))[0]
        #
        #     ra = np.array(scidata["RA"][rows])
        #     dec = np.array(scidata["DEC"][rows])
        #     dtarget = np.array(scidata["DESI_TARGET"][rows])
        #     init = np.array(scidata["NUMOBS_INIT"][rows])
        #
        #     requested = obs * np.ones_like(avail)
        #
        #     under = np.where(avail < requested)[0]
        #     over = np.where(avail > requested)[0]
        #
        #     limavail = np.array(avail)
        #     limavail[over] = obs
        #
        #     deficit = np.zeros(len(limavail), dtype=np.int)
        #
        #     deficit[:] = limavail - counts
        #     deficit[avail == 0] = 0
        #
        #     possible[name] = np.sum(limavail)
        #     achieved[name] = np.sum(counts)
        #
        #     log_msg += "{}-{}:\n".format(name, obs)
        #
        #     pindx = np.where(deficit > 0)[0]
        #     poor_tgid = tgid[pindx]
        #     poor_dtarget = dtarget[pindx]
        #     log_msg += "  Deficit > 0: {}\n".format(len(poor_tgid))
        #     poor_ra = ra[pindx]
        #     poor_dec = dec[pindx]
        #     poor_deficit = deficit[pindx]
        #
        #     # Plot Target availability
        #     # Commented out by default, since in the case of high target density
        #     # needed for maximizing assignments, there are far more targets than
        #     # the number of available fiber placements.
        #
        #     # marksize = 4 * np.ones_like(deficit)
        #     #
        #     # fig = plt.figure(figsize=(12, 12))
        #     # ax = fig.add_subplot(1, 1, 1)
        #     # ax.scatter(ra, dec, s=2, c="black", marker="o")
        #     # for pt, pr, pd, pdef in zip(poor_tgid, poor_ra, poor_dec, poor_deficit):
        #     #     ploc = plt.Circle(
        #     #         (pr, pd), radius=(0.05*pdef), fc="none", ec="red"
        #     #     )
        #     #     ax.add_artist(ploc)
        #     # ax.set_xlabel("RA", fontsize="large")
        #     # ax.set_ylabel("DEC", fontsize="large")
        #     # ax.set_title(
        #     #     "Target \"{}\": (min(avail, requested) - counts) > 0".format(
        #     #         name, obs
        #     #     )
        #     # )
        #     # #ax.legend(handles=lg, framealpha=1.0, loc="upper right")
        #     # plt.savefig(os.path.join(test_dir, "{}-{}_deficit.pdf".format(name, obs)), dpi=300, format="pdf")
        #
        # log_msg += \
        #     "Assigned {} tiles for total of {} possible target observations\n".format(
        #         len(tile_ids), nassign
        #     )
        # ach = 0
        # for nm in possible.keys():
        #     ach += achieved[nm]
        #     log_msg += \
        #         "  type {} had {} possible target obs and achieved {}\n".format(
        #             nm, possible[nm], achieved[nm]
        #         )
        # frac = 100.0 * ach / nassign
        # log_msg += \
        #     "  {} / {} = {:0.2f}% of fibers were assigned\n".format(
        #         ach, nassign, frac
        #     )
        # for nm in possible.keys():
        #     log_msg += \
        #         "  type {} had {:0.2f}% of achieved observations\n".format(
        #             nm, achieved[nm] / ach
        #         )
        # with open(log_file, "w") as f:
        #     f.write(log_msg)
        #
        # self.assertGreaterEqual(frac,  99.0)

        # Test if qa-fiberassign script runs without crashing
        script = os.path.join(self.binDir, "qa-fiberassign")
        if os.path.exists(script):
            fafiles = glob.glob(f"{test_dir}/fiberassign-*.fits")
            cmd = "{} --targets {}".format(script, " ".join(fafiles))
            err = subprocess.call(cmd.split())
            self.assertEqual(err, 0, f"FAILED ({err}): {cmd}")
        else:
            print(f"ERROR: didn't find {script}")
Ejemplo n.º 3
0
    def test_fieldrot(self):
        test_dir = test_subdir_create("assign_test_fieldrot")
        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        # Simulate the tiles
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)

        # petal mapping
        rotator = petal_rotation(1, reverse=False)

        rots = [0, 36]

        tile_ids = None

        for rt in rots:
            odir = "theta_{:02d}".format(rt)

            tgs = Targets()
            load_target_file(tgs, input_mtl)
            load_target_file(tgs, input_std)
            load_target_file(tgs, input_sky)
            load_target_file(tgs, input_suppsky)

            # Manually override the field rotation
            tiles = load_tiles(tiles_file=tfile, obstheta=float(rt))
            if tile_ids is None:
                tile_ids = list(tiles.id)

            # Simulate a fake focalplane
            fp, exclude, state = sim_focalplane(rundate=test_assign_date,
                                                fakepos=True)

            # Load the focalplane
            hw = load_hardware(focalplane=(fp, exclude, state),
                               rundate=test_assign_date)

            # Precompute target positions
            tile_targetids, tile_x, tile_y = targets_in_tiles(hw, tgs, tiles)

            # Compute the targets available to each fiber for each tile.
            tgsavail = TargetsAvailable(hw, tiles, tile_targetids, tile_x,
                                        tile_y)

            # Compute the fibers on all tiles available for each target
            favail = LocationsAvailable(tgsavail)

            # Pass empty map of STUCK positioners that land on good sky
            stucksky = {}

            # Create assignment object
            asgn = Assignment(tgs, tgsavail, favail, stucksky)

            # First-pass assignment of science targets
            asgn.assign_unused(TARGET_TYPE_SCIENCE)

            out = os.path.join(test_dir, odir)

            write_assignment_fits(tiles, asgn, out_dir=out, all_targets=True)

            ppet = 6
            if odir == "theta_36":
                ppet = rotator[6]
            plot_tiles(glob.glob(os.path.join(out, "fba-*.fits")),
                       real_shapes=True,
                       petals=[ppet],
                       serial=True)

            # Explicitly free everything
            del asgn
            del favail
            del tgsavail
            del hw
            del tiles
            del tile_targetids, tile_x, tile_y
            del tgs

        # For each tile, compare the assignment output and verify that they
        # agree with a one-petal rotation.

        # NOTE:  The comparison below will NOT pass, since we are still
        # Sorting by highest priority available target and then (in case
        # of a tie) by fiber ID.  See line 333 of assign.cpp.  Re-enable this
        # test after that is changed to sort by location in case of a tie.

        # for tl in tile_ids:
        #     orig_path = os.path.join(
        #         test_dir, "theta_00", "fiberassign_{:06d}.fits".format(tl)
        #     )
        #     orig_header, orig_data, _, _, _ = \
        #         read_assignment_fits_tile((tl, orig_path))
        #     rot_path = os.path.join(
        #         test_dir, "theta_36", "fiberassign_{:06d}.fits".format(tl)
        #     )
        #     rot_header, rot_data, _, _, _ = \
        #         read_assignment_fits_tile((tl, rot_path))
        #     comppath = os.path.join(
        #         test_dir, "comp_00-36_{:06d}.txt".format(tl)
        #     )
        #     with open(comppath, "w") as fc:
        #         for dev, petal, tg in zip(
        #                 orig_data["DEVICE_LOC"], orig_data["PETAL_LOC"],
        #                 orig_data["TARGETID"]
        #         ):
        #             for newdev, newpetal, newtg in zip(
        #                     rot_data["DEVICE_LOC"], rot_data["PETAL_LOC"],
        #                     rot_data["TARGETID"]
        #             ):
        #                 rpet = rotator[newpetal]
        #                 if (newdev == dev) and (rpet == petal):
        #                     fc.write(
        #                         "{}, {} = {} : {}, {} = {}\n"
        #                         .format(petal, dev, tg, rpet, newdev, newtg)
        #                     )
        #                     # self.assertEqual(newtg, tg)

        return
Ejemplo n.º 4
0
    def test_io(self):
        np.random.seed(123456789)
        test_dir = test_subdir_create("assign_test_io")
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)
        load_target_file(tgs, input_suppsky)

        # Compute the targets available to each fiber for each tile.
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state),
                           rundate=test_assign_date)
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)
        # Precompute target positions
        tile_targetids, tile_x, tile_y = targets_in_tiles(hw, tgs, tiles)
        tgsavail = TargetsAvailable(hw, tiles, tile_targetids, tile_x, tile_y)

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Pass empty map of STUCK positioners that land on good sky
        stucksky = {}

        # First pass assignment
        asgn = Assignment(tgs, tgsavail, favail, stucksky)
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Write out, merge, read back in and verify

        write_assignment_ascii(tiles,
                               asgn,
                               out_dir=test_dir,
                               out_prefix="test_io_ascii_")

        write_assignment_fits(tiles,
                              asgn,
                              out_dir=test_dir,
                              out_prefix="basic_",
                              all_targets=False)

        write_assignment_fits(tiles,
                              asgn,
                              out_dir=test_dir,
                              out_prefix="full_",
                              all_targets=True)

        plotpetals = [0]
        # plotpetals = None

        plot_tiles(glob.glob(os.path.join(test_dir, "basic_*.fits")),
                   petals=plotpetals,
                   serial=True)

        plot_tiles(glob.glob(os.path.join(test_dir, "full_*.fits")),
                   petals=plotpetals,
                   serial=True)

        target_files = [input_mtl, input_sky, input_std]
        tile_ids = list(tiles.id)

        merge_results(target_files,
                      list(),
                      tile_ids,
                      result_dir=test_dir,
                      result_prefix="basic_",
                      out_dir=test_dir,
                      out_prefix="basic_tile-",
                      copy_fba=False)

        merge_results(target_files,
                      list(),
                      tile_ids,
                      result_dir=test_dir,
                      result_prefix="full_",
                      out_dir=test_dir,
                      out_prefix="full_tile-",
                      copy_fba=False)

        # Here we test reading with the standard reading function

        for tid in tile_ids:
            tdata = asgn.tile_location_target(tid)
            avail = tgsavail.tile_data(tid)
            # Check basic format
            infile = os.path.join(test_dir,
                                  "basic_tile-{:06d}.fits".format(tid))
            inhead, fiber_data, targets_data, avail_data, gfa_targets = \
                read_assignment_fits_tile((infile))

            for lid, tgid, tgra, tgdec in zip(fiber_data["LOCATION"],
                                              fiber_data["TARGETID"],
                                              fiber_data["TARGET_RA"],
                                              fiber_data["TARGET_DEC"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)

            # Check full format
            infile = os.path.join(test_dir,
                                  "full_tile-{:06d}.fits".format(tid))
            inhead, fiber_data, targets_data, avail_data, gfa_targets = \
                read_assignment_fits_tile((infile))
            for lid, tgid, tgra, tgdec in zip(fiber_data["LOCATION"],
                                              fiber_data["TARGETID"],
                                              fiber_data["TARGET_RA"],
                                              fiber_data["TARGET_DEC"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)

        # Now read the files directly with fitsio and verify against the input
        # target data.

        for tid in tile_ids:
            tdata = asgn.tile_location_target(tid)
            avail = tgsavail.tile_data(tid)
            # Check basic format
            infile = os.path.join(test_dir,
                                  "basic_tile-{:06d}.fits".format(tid))
            fdata = fitsio.FITS(infile, "r")
            fassign = fdata["FIBERASSIGN"].read()
            ftargets = fdata["TARGETS"].read()
            for lid, tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    fassign["LOCATION"], fassign["TARGETID"],
                    fassign["TARGET_RA"], fassign["TARGET_DEC"],
                    fassign["SUBPRIORITY"], fassign["PRIORITY"],
                    fassign["OBSCONDITIONS"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)
                    self.assertEqual(tgsub, props.subpriority)
                    self.assertEqual(tgprior, props.priority)
                    self.assertEqual(tgobs, props.obscond)
            for tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    ftargets["TARGETID"], ftargets["RA"], ftargets["DEC"],
                    ftargets["SUBPRIORITY"], ftargets["PRIORITY"],
                    ftargets["OBSCONDITIONS"]):
                props = tgs.get(tgid)
                self.assertEqual(tgra, props.ra)
                self.assertEqual(tgdec, props.dec)
                self.assertEqual(tgsub, props.subpriority)
                self.assertEqual(tgprior, props.priority)
                self.assertEqual(tgobs, props.obscond)

            # Check full format
            infile = os.path.join(test_dir,
                                  "full_tile-{:06d}.fits".format(tid))
            fdata = fitsio.FITS(infile, "r")
            fassign = fdata["FIBERASSIGN"].read()
            ftargets = fdata["TARGETS"].read()
            for lid, tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    fassign["LOCATION"], fassign["TARGETID"],
                    fassign["TARGET_RA"], fassign["TARGET_DEC"],
                    fassign["SUBPRIORITY"], fassign["PRIORITY"],
                    fassign["OBSCONDITIONS"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)
                    self.assertEqual(tgsub, props.subpriority)
                    self.assertEqual(tgprior, props.priority)
                    self.assertEqual(tgobs, props.obscond)
            for tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    ftargets["TARGETID"], ftargets["RA"], ftargets["DEC"],
                    ftargets["SUBPRIORITY"], ftargets["PRIORITY"],
                    ftargets["OBSCONDITIONS"]):
                props = tgs.get(tgid)
                self.assertEqual(tgra, props.ra)
                self.assertEqual(tgdec, props.dec)
                self.assertEqual(tgsub, props.subpriority)
                self.assertEqual(tgprior, props.priority)
                self.assertEqual(tgobs, props.obscond)

        plot_tiles(glob.glob(os.path.join(test_dir, "basic_tile-*")),
                   petals=plotpetals,
                   serial=True)

        plot_tiles(glob.glob(os.path.join(test_dir, "full_tile-*")),
                   petals=plotpetals,
                   serial=True)
        return
Ejemplo n.º 5
0
    def test_full(self, do_stucksky=False):
        test_dir = test_subdir_create("assign_test_full")
        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)
        load_target_file(tgs, input_suppsky)

        # Read hardware properties
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state),
                           rundate=test_assign_date)
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)

        if do_stucksky:
            sim_stuck_sky(test_dir, hw, tiles)

        # Precompute target positions
        tile_targetids, tile_x, tile_y = targets_in_tiles(hw, tgs, tiles)

        # Compute the targets available to each fiber for each tile.
        tgsavail = TargetsAvailable(hw, tiles, tile_targetids, tile_x, tile_y)

        del tile_targetids, tile_x, tile_y

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Pass empty map of STUCK positioners that land on good sky
        stucksky = None
        if do_stucksky:
            stucksky = stuck_on_sky(hw, tiles)
        if stucksky is None:
            # (the pybind code doesn't like None when a dict is expected...)
            stucksky = {}

        # Create assignment object
        asgn = Assignment(tgs, tgsavail, favail, stucksky)

        run(asgn)

        write_assignment_fits(tiles,
                              asgn,
                              out_dir=test_dir,
                              all_targets=True,
                              stucksky=stucksky)

        plotpetals = [0]
        #plotpetals = None
        plot_tiles(glob.glob(os.path.join(test_dir, "fba-*.fits")),
                   real_shapes=True,
                   petals=plotpetals,
                   serial=True)

        qa_tiles(hw, tiles, result_dir=test_dir)

        qadata = None
        with open(os.path.join(test_dir, "qa.json"), "r") as f:
            qadata = json.load(f)

        for tile, props in qadata.items():
            self.assertTrue(props["assign_science"] >= 4485)
            self.assertEqual(100, props["assign_std"])
            if do_stucksky:
                # We get 3 stuck positioners landing on good sky!
                self.assertTrue(
                    (props["assign_sky"] + props["assign_suppsky"]) >= 397)
            else:
                self.assertTrue(
                    (props["assign_sky"] + props["assign_suppsky"]) >= 400)

        plot_qa(qadata,
                os.path.join(test_dir, "qa"),
                outformat="pdf",
                labels=True)
        return