Ejemplo n.º 1
0
 def eval_fsa_beq2(self, grid=None):
     grid, rzp = self.get_gridrzp(grid)
     self.dump_fsa_beq2 = self.output_nml.get('dump_fsa_beq2', False)
     if self.dump_fsa_beq2:
         if len(rzp.shape) == 2:
             field = self.eval_symm('fsa_beq2', grid, dmode=1, eq=1)
             self.fielddict['fsa_beq2'] = fc.Scalar(field, rzp, 1, True)
         else:
             field = self.eval.eval_field('fsa_beq2', grid, dmode=1, eq=1)
             self.fielddict['fsa_beq2'] = fc.Scalar(field, rzp, 1, True)
     else:
         self.fielddict['fsa_beq2'] = 0.0
     return None
Ejemplo n.º 2
0
 def eval_diff(self, grid=None):
     ''' Get the diff shape scalars from eval nimrod
         Some extralogic is needed to pull apart the different
         diff shape scalar fields from the output of eval_field
         note when ds_nqty>1
         elecd_diff is 0
         iso_visc_diff is 1
     '''
     diff_dmode = self.diff_dmode
     grid, rzp = self.get_gridrzp(grid)
     self.ds_nqty = self.equil_nml.get('ds_nqty', 1)
     if len(rzp.shape) == 2:
         field = self.eval_symm('d', rzp, dmode=diff_dmode, eq=1)
     else:
         field = self.eval.eval_field('d', grid, dmode=diff_dmode, eq=1)
     diff_shape = []
     ishape = list(field.shape)
     ishape[0] = ishape[0] // self.ds_nqty
     ifield = np.zeros(ishape)
     for ii in range(self.ds_nqty):
         ifield[0] = field[ii]
         if diff_dmode > 0:
             start = self.ds_nqty + ii * 3
             end = start + 3
             ifield[1:4] = field[start:end]
         if diff_dmode > 1:
             start = self.ds_nqty * 4 + ii * 6
             end = start + 6
             ifield[4:10] = field[start:end]
         diff_shape.append(fc.Scalar(ifield, rzp, diff_dmode, True))
     self.fielddict['diff_shape'] = diff_shape
     return None
Ejemplo n.º 3
0
 def eval_p(self, grid=None, fft=False):
     grid, rzp = self.get_gridrzp(grid)
     if self.peq or self.p0:
         if len(rzp.shape) == 2:
             field = self.eval_symm('p', rzp, dmode=self.pdmode, eq=1)
             self.fielddict['peq'] = fc.Scalar(field, rzp, self.pdmode,
                                               True)
         else:
             field = self.eval.eval_field('p',
                                          grid,
                                          dmode=self.pdmode,
                                          eq=1)
             self.fielddict['peq'] = fc.Scalar(field, rzp, self.pdmode,
                                               True)
     if self.p0:
         if len(rzp.shape) == 2:
             field2 = self.eval_symm('p', rzp, dmode=self.pdmode, eq=3)
             field2 = field2 - field  #sutract eq
             self.fielddict['p0'] = fc.Scalar(field2, rzp, self.pdmode,
                                              True)
         else:
             field2 = self.eval.eval_field('p',
                                           grid,
                                           dmode=self.pdmode,
                                           eq=3)
             field2 = field2 - field  #subtract eq
             self.fielddict['p0'] = fc.Scalar(field2, rzp, self.pdmode,
                                              True)
     if self.ppert:
         field = self.eval.eval_field('p', grid, dmode=self.pdmode, eq=0)
         if self.p0:
             field = field - field2  #remove n=0 perturbation
         self.fielddict['ppert'] = fc.Scalar(field, rzp, self.pdmode, True)
         if fft:
             self.fielddict['pfour'] = self.fft(field, type='s')
     return None
Ejemplo n.º 4
0
 def eval_neo_mask(self, grid=None):
     grid, rzp = self.get_gridrzp(grid)
     r0 = self.closure_nml.get('neo_axis_r', 0)
     z0 = self.closure_nml.get('neo_axis_z', 0)
     rbump = self.closure_nml.get('neo_bump_r0', 1.0)
     shape = list(rzp.shape)
     shape[0] = 4
     fval = np.zeros(shape)
     fval[0] = 1.0
     r2 = (np.power(rzp[0] - r0, 2) + np.power(rzp[1] - z0, 2)) / rbump**2
     if isinstance(r2, np.float):
         if r2 < 1.0:
             #check
             bump = np.exp(1 - 1. / (1. - r2))
             dbumpdr2 = -r2 / (1 - r2)**3
             dr2dx = 2 * (rzp[0] - r0) / rbump**2
             dr2dz = 2 * (rzp[1] - r0) / rbump**2
             d2r2dxx = 2 / rbump**2
             d2r2dyy = 2 / rbump**2
             d2r2dxy = 0.0
             #print(type(bump),type(dbumpdr2),type(dr2dx))
             #print(dbumpdr2.shape)
             fval[0] = 1.0 - bump
             fval[1] = -bump * dbumpdr2 * dr2dx
             fval[2] = -bump * dbumpdr2 * dr2dz
     else:
         result = np.where(r2 < 1.0)
         for indicies in zip(*result):
             #check
             bump = np.exp(1 - 1. / (1. - r2[indicies]))
             dbumpdr2 = -r2[indicies] / (1 - r2[indicies])**3
             dr2dx = 2 * (rzp[(0, ) + indicies] - r0) / rbump**2
             dr2dz = 2 * (rzp[(1, ) + indicies] - r0) / rbump**2
             d2r2dxx = 2 / rbump**2
             d2r2dyy = 2 / rbump**2
             d2r2dxy = 0.0
             #print(type(bump),type(dbumpdr2),type(dr2dx))
             #print(dbumpdr2.shape)
             fval[(0, ) + indicies] = 1.0 - bump
             fval[(1, ) + indicies] = -bump * dbumpdr2 * dr2dx
             fval[(2, ) + indicies] = -bump * dbumpdr2 * dr2dz
     return fc.Scalar(fval, rzp, 1, True)