def plot_NMDAspike(self,remakeFig=False):
        with open(self.datapath+'NMDAspike_latest.pkl','rb') as f:
            res = pickle.load(f)

        fig = MyFigure(figsize=(1.4,0.8))
        pd=fig.addplot([0.3,0.4,0.65,0.55])
        for j in xrange(len(res['vDend_list'])):
            plot(res['times'],res['vDend_list'][j],color='black')
        pd.xlabel('Time (ms)',labelpad=3)
        pd.ylabel('$V_D$ (mV)',labelpad=2)
        pd.ax.set_yticks([-70,-20])
        pd.ax.set_xticks([0,100])
        pd.xaxis.set_tick_params(pad=0.)
        pd.yaxis.set_tick_params(pad=0.)
        if remakeFig:
            fig.save(self.figpath+'plot_NMDAspike_Dend'+self.version)

        fig = MyFigure(figsize=(1.4,0.7))
        pd=fig.addplot([0.3,0.3,0.65,0.65])
        for j in xrange(len(res['vDend_list'])):
            plot(res['times'],res['vSoma_list'][j],color='black')
        pd.xlabel('Time (ms)',labelpad=3)
        ylabel('$V_S$ (mV)',labelpad=0)
        pd.ax.set_yticks([-70,-60])
        pd.ax.set_xticks([0,100])
        pd.xaxis.set_tick_params(pad=0.)
        pd.yaxis.set_tick_params(pad=0.)
        if remakeFig:
            fig.save(self.figpath+'plot_NMDAspike_Soma'+self.version)
        show()
    def plot_NMDAspike(self, remakeFig=False):
        with open(self.datapath + 'NMDAspike_latest.pkl', 'rb') as f:
            res = pickle.load(f)

        fig = MyFigure(figsize=(1.4, 0.8))
        pd = fig.addplot([0.3, 0.4, 0.65, 0.55])
        for j in xrange(len(res['vDend_list'])):
            plot(res['times'], res['vDend_list'][j], color='black')
        pd.xlabel('Time (ms)', labelpad=3)
        pd.ylabel('$V_D$ (mV)', labelpad=2)
        pd.ax.set_yticks([-70, -20])
        pd.ax.set_xticks([0, 100])
        pd.xaxis.set_tick_params(pad=0.)
        pd.yaxis.set_tick_params(pad=0.)
        if remakeFig:
            fig.save(self.figpath + 'plot_NMDAspike_Dend' + self.version)

        fig = MyFigure(figsize=(1.4, 0.7))
        pd = fig.addplot([0.3, 0.3, 0.65, 0.65])
        for j in xrange(len(res['vDend_list'])):
            plot(res['times'], res['vSoma_list'][j], color='black')
        pd.xlabel('Time (ms)', labelpad=3)
        ylabel('$V_S$ (mV)', labelpad=0)
        pd.ax.set_yticks([-70, -60])
        pd.ax.set_xticks([0, 100])
        pd.xaxis.set_tick_params(pad=0.)
        pd.yaxis.set_tick_params(pad=0.)
        if remakeFig:
            fig.save(self.figpath + 'plot_NMDAspike_Soma' + self.version)
        show()
    def plot_NevianFit(self):
        with open(self.datapath+'learning_para_2014-11-10_0','rb') as f:
            para = pickle.load(f)
        experiment3B = 'NevianFig3B'
        with open(self.datapath+'resultlist_'+experiment3B,'rb') as f:
            result_list3B = pickle.load(f)
        experiment3D_full = 'NevianFig3D_full'
        with open(self.datapath+'resultlist_'+experiment3D_full,'rb') as f:
            result_list3D_full = pickle.load(f)
        experiment2_full = 'NevianFig2_full'
        with open(self.datapath+'resultlist_'+experiment2_full,'rb') as f:
            result_list2_full = pickle.load(f)

        remakeFig = True

        fig=MyFigure(figsize=(1.5,1.5))
        pl = fig.addplot(rect=[0.3,0.25,0.65,0.7])
        self.plot_model_result(pl, para, result_list2_full, experiment2_full, plot_data=True)
        #fig.save(self.figpath+'Fit'+experiment2_full+'_'+self.version)
        #compareWithNevian_CaTrace(para,remakeFig,experiment = 'NevianFig5')

        fig=MyFigure(figsize=(1.5,1.5))
        pl = fig.addplot(rect=[0.3,0.25,0.65,0.7])
        self.plot_model_result(pl, para, result_list3B, experiment3B, plot_data=True)
        #fig.save(self.figpath+'Fit'+experiment3B+'_'+self.version)
        #compareWithNevian_CaTrace(para,remakeFig,experiment = experiment3B)


        fig=MyFigure(figsize=(1.5,1.5))
        pl = fig.addplot(rect=[0.3,0.25,0.65,0.7])
        self.plot_model_result(pl, para, result_list3D_full, experiment3D_full, plot_data=True)
        fig.save(self.figpath+'Fit'+experiment3D_full+'_'+self.version)
    def plot_NMDAPlateauMechanism(self):

        p = MCM.read_params(self.paramsfile)

        # NMDA channel voltage-glutamate input relationship
        betaPlot = linspace(0, 10, 100)

        def vSteadyFunc(p, v, beta):
            gL = 1
            gNMDA = beta * gL
            #gGABA = 1
            iLeak = -gL * (v - p['vRest_pyr'])
            iNMDA = -gNMDA * (v - p['vE_pyr']) / (
                1 + exp(-(v - p['vHalfNMDA']) / p['vSpreadNMDA']))
            iGABA = -gGABA * (v - p['vI_pyr'])
            iTot = iLeak + iNMDA + iGABA
            return iTot

        gGABA = 0
        figure()
        vSteadyPlot_low = list()
        vSteadyPlot_high = list()

        for beta in betaPlot:
            sol = sp.optimize.newton(lambda v: vSteadyFunc(p, v, beta),
                                     -70 * mvolt,
                                     maxiter=1000)
            vSteadyPlot_low.append(sol)
            sol = sp.optimize.newton(lambda v: vSteadyFunc(p, v, beta),
                                     0 * mvolt,
                                     maxiter=1000)
            vSteadyPlot_high.append(sol)

        theta = betaPlot[array(vSteadyPlot_high) / mvolt < -40][-1]
        fig = MyFigure(figsize=(1.5, 1.3))
        pl = fig.addplot([0.35, 0.3, 0.6, 0.65])
        pl.plot([theta] * 2, [-70, 0],
                '--',
                color=array([189, 189, 189]) / 255)
        pl.plot(betaPlot, array(vSteadyPlot_low) / mvolt, color='black')
        pl.plot(betaPlot, array(vSteadyPlot_high) / mvolt, color='black')
        pl.ax.set_yticks([-70, -10])
        pl.ax.set_xticks([0, theta, 10])
        pl.ax.set_xticklabels(['0', r'$\theta_{\mathrm{NMDA}}$', '10'])
        xlabel('$g_{\mathrm{NMDA}}/(g_L+g_{\mathrm{GABA}})$')
        ylabel('$V_{ss}$ (mV)', labelpad=-5)
        fig.save(self.figpath + 'plot_NMDAPlateauMechanism' + self.version)

        vplot = linspace(-70, -15, 100) * mV
        fMg = 1 / (1 + exp(-(vplot - p['vHalfNMDA']) / p['vSpreadNMDA']))
        fig = MyFigure(figsize=(1.5, 1.3))
        pl = fig.addplot([0.35, 0.3, 0.6, 0.65])
        pl.plot(vplot / mV, fMg, color='black')
        ylabel('$f_{\mathrm{Mg}}(V)$', labelpad=-5)
        xlabel('$V_D$ (mV)')
        pl.ax.set_xticks([-70, -10])
        pl.ax.set_yticks([0, 0.5])
    def plot_NMDAPlateauMechanism(self):

        p = MCM.read_params(self.paramsfile)

        # NMDA channel voltage-glutamate input relationship
        betaPlot = linspace(0,10,100)
        def vSteadyFunc(p,v,beta):
            gL = 1
            gNMDA = beta*gL
            #gGABA = 1
            iLeak = -gL*(v-p['vRest_pyr'])
            iNMDA = -gNMDA*(v-p['vE_pyr'])/(1+exp(-(v-p['vHalfNMDA'])/p['vSpreadNMDA']))
            iGABA = -gGABA*(v-p['vI_pyr'])
            iTot = iLeak + iNMDA + iGABA
            return iTot

        gGABA=0
        figure()
        vSteadyPlot_low = list()
        vSteadyPlot_high = list()

        for beta in betaPlot:
            sol = sp.optimize.newton(lambda v: vSteadyFunc(p,v,beta),-70*mvolt,maxiter=1000)
            vSteadyPlot_low.append(sol)
            sol = sp.optimize.newton(lambda v: vSteadyFunc(p,v,beta),0*mvolt,maxiter=1000)
            vSteadyPlot_high.append(sol)

        theta = betaPlot[array(vSteadyPlot_high)/mvolt<-40][-1]
        fig = MyFigure(figsize=(1.5,1.3))
        pl=fig.addplot([0.35,0.3,0.6,0.65])
        pl.plot([theta]*2,[-70,0],'--',color=array([189,189,189])/255)
        pl.plot(betaPlot,array(vSteadyPlot_low)/mvolt, color='black')
        pl.plot(betaPlot,array(vSteadyPlot_high)/mvolt, color='black')
        pl.ax.set_yticks([-70,-10])
        pl.ax.set_xticks([0,theta,10])
        pl.ax.set_xticklabels(['0',r'$\theta_{\mathrm{NMDA}}$','10'])
        xlabel('$g_{\mathrm{NMDA}}/(g_L+g_{\mathrm{GABA}})$')
        ylabel('$V_{ss}$ (mV)',labelpad=-5)
        fig.save(self.figpath+'plot_NMDAPlateauMechanism'+self.version)

        vplot = linspace(-70,-15,100)*mV
        fMg = 1/(1+exp(-(vplot-p['vHalfNMDA'])/p['vSpreadNMDA']))
        fig = MyFigure(figsize=(1.5,1.3))
        pl=fig.addplot([0.35,0.3,0.6,0.65])
        pl.plot(vplot/mV,fMg, color='black')
        ylabel('$f_{\mathrm{Mg}}(V)$',labelpad=-5)
        xlabel('$V_D$ (mV)')
        pl.ax.set_xticks([-70,-10])
        pl.ax.set_yticks([0,0.5])
Ejemplo n.º 6
0
 def plot_Newsome_statespace_legend(self):
     i_dim = 0
     n_m = 6
     for colors in [motion_colors, color_colors]:
         mks = 4
         fig = MyFigure(figsize=(0.75, 0.2))
         pl = fig.addplot(rect=[0.05, 0.05, 0.9, 0.9])
         for i_coh in xrange(n_m):
             if i_coh < (n_m / 2):
                 mfc = 'white'
                 mec = colors[i_coh]
             else:
                 mfc = colors[n_m - i_coh - 1]
                 mec = mfc
             pl.plot(i_coh,
                     0,
                     'o',
                     markerfacecolor=mfc,
                     markeredgecolor=mec,
                     markersize=mks)
         pl.ax.set_frame_on(False)
         pl.ax.set_yticks([])
         pl.ax.set_xticks([])
         fig.save(self.figpath +
                  'plot_Newsome_statespace_legend_%d' % i_dim)
         i_dim += 1
Ejemplo n.º 7
0
    def plot_WeightChangevsRate(self):
        with open(self.datapath + 'calc_WeightChangevsRate', 'rb') as f:
            output = pickle.load(f)

        p = output['params']
        w_post_list = output['w_post_list']
        dend_inh_rates = p['dend_inh_rates']

        colorMatrix = array([[65, 182, 196], [34, 94, 168], [8, 29, 88]]) / 255

        fig = MyFigure(figsize=(2.5, 1.2))
        pl = fig.addplot(rect=[0.25, 0.3, 0.7, 0.65])
        pl.plot([0, max(p['pre_rates'])], [1, 1],
                color=array([189, 189, 189]) / 255)
        i = 0
        plotlist = list()
        for w_post in w_post_list:
            ax, = pl.plot(p['pre_rates'], w_post, color=colorMatrix[i, :])
            plotlist.append(ax)
            plt.xlabel('Pre-synaptic rate (Hz)')
            plt.ylabel('Weight change')
            i += 1
        pl.ax.set_xticks([0, 20, 40])
        pl.ax.set_plt.ylim((0, 3))
        pl.ax.set_yticks([0, 1, 2, 3])
        leg = plt.legend(plotlist, ['%d' % r for r in dend_inh_rates],
                         title='Inhibition (Hz)',
                         loc=2,
                         bbox_to_anchor=[0.1, 1.15])
        leg.draw_frame(False)
        fig.save(self.figpath + 'WeightChangevsRate' + self.version)
    def plot_basic_pathway_gating_slice(self,mode,plot_ylabel=True):
        with open(self.datapath+'basic_pathway_gating_response_slice_'+mode+'_latest','rb') as f:
            p = pickle.load(f)
        #print p['firing_rate_plot']
        fig=MyFigure(figsize=(1.8,0.75))
        pl = fig.addplot(rect=[0.25,0.15,0.55,0.65])
        #pl.plot(p['firing_rate_plot'][:p['np']],color=colorMatrix[1],label='%d' % p['bkg_inh_rate'])
        #pl.plot(p['firing_rate_plot'][p['np']:],color=colorMatrix[5],label='%d' % (p['bkg_inh_rate']+p['dend_inh_rate']))
        pl.plot(p['firing_rate_plot'][:p['np']],color=colorMatrix[1],label='1')
        pl.plot(p['firing_rate_plot'][p['np']:],color=colorMatrix[5],label='2')

        #xlabel('Pathway 1 stimulus')
        #xticks([p['np']//2],['preferred'])
        xticks([p['np']//2],[''])

        if mode in ['prelearning','postlearning']:
            maxr = 25
        else:
            maxr = p['firing_rate_plot'].max()
        pl.ax.set_ylim((0,maxr))
        pl.ax.set_yticks([0,maxr//5*5])
        if plot_ylabel:
            ylabel('Output rate (Hz)')
            leg = legend(title='Open gate',loc=1, bbox_to_anchor=[1.0, 1.35], frameon=False)
        else:
            pl.ax.set_yticklabels(['',''])
        fig.save(self.figpath+'basic_pathway_gating_slice_'+mode+self.version)


        ron = np.max(p['firing_rate_plot'][:p['np']]) - np.min(p['firing_rate_plot'][:])
        roff = np.max(p['firing_rate_plot'][p['np']:]) - np.min(p['firing_rate_plot'][:])

        print 'Gating selectivity is %0.2f' % ((ron-roff)/(ron+roff))
    def plot_sNMDAmean(self):
        p = MCM.read_params(self.paramsfile)

        def meansNMDA(rate,p):
            x_mean = rate*p['tauNMDARise']
            temp = p['alphaNMDA']*p['tauNMDADecay']*x_mean
            s_mean = temp/(1+temp)
            return s_mean

        theta = 0.645 # make threshold around 30 Hz
        #theta = 0.6784
        gGABA = 0.6
        # NMDA channel voltage-glutamate input relationship
        fig = MyFigure(figsize=(1.9,1.5))
        pl=fig.addplot([0.4,0.3,0.5,0.65])
        rates = linspace(0,300,100)
        meanNMDAplot=meansNMDA(rates,p)
        meanNMDAplot2 = meanNMDAplot/(1+gGABA)
        pl.plot([0,300],[theta]*2,'--',color=array([189,189,189])/255)
        pl.plot(rates,meanNMDAplot,color=colorMatrix[1],label='0')
        pl.plot(rates,meanNMDAplot2,color=colorMatrix[5],label='%0.1f' % gGABA)

        xlabel('NMDA input rate (Hz)')
        ylabel('$g_{\mathrm{NMDA}}/(g_L+g_{\mathrm{GABA}})$')
        pl.ax.set_yticks([0,theta])
        pl.ax.set_yticklabels(['0',r'$\theta_{\mathrm{NMDA}}$'])
        pl.ax.set_xticks([0,150,300])
        leg=legend(title='$g_{\mathrm{GABA}}/g_L$',loc=4,bbox_to_anchor=[1.2, -0.05])
        leg.draw_frame(False)
        fig.save(self.figpath+'sNMDAmean'+self.version)
    def plot_WeightChangevsRate(self):
        with open(self.datapath+'calc_WeightChangevsRate','rb') as f:
            output = pickle.load(f)

        p = output['params']
        w_post_list = output['w_post_list']
        dend_inh_rates = p['dend_inh_rates']


        colorMatrix = array([[65,182,196],
                            [34,94,168],
                            [8,29,88]])/255


        fig=MyFigure(figsize=(2.5,1.2))
        pl = fig.addplot(rect=[0.25,0.3,0.7,0.65])
        pl.plot([0,max(p['pre_rates'])],[1,1],color=array([189,189,189])/255)
        i = 0
        plotlist = list()
        for w_post in w_post_list:
            ax, = pl.plot(p['pre_rates'],w_post,color=colorMatrix[i,:])
            plotlist.append(ax)
            plt.xlabel('Pre-synaptic rate (Hz)')
            plt.ylabel('Weight change')
            i += 1
        pl.ax.set_xticks([0,20,40])
        pl.ax.set_plt.ylim((0,3))
        pl.ax.set_yticks([0,1,2,3])
        leg=plt.legend(plotlist,['%d' % r for r in dend_inh_rates],title='Inhibition (Hz)',
                   loc=2,bbox_to_anchor=[0.1, 1.15])
        leg.draw_frame(False)
        fig.save(self.figpath+'WeightChangevsRate'+self.version)
    def fit_RatevsI(self):
        '''
        fit the somatic firing rate as a function of current injection
        '''
        with open(self.datapath+'RatevsI'+self.version,'rb') as f:
            result = pickle.load(f)

        x0 = [ 174.85951028,   45.16030095,    2.89003711]
        bnds = ((100,500),(10,1000),(0,5))

        res = scipy.optimize.minimize(lambda p: self.obj_func_RatevsI(p,result),
                                      x0,bounds=bnds,method='SLSQP',
                                      options={'maxiter':100, 'disp':True})
        print res.x
        p = res.x

        xdata = result['clamped_current_list']
        ydata = result['fr_list']
        ymodel, _ = self.obj_func_RatevsI(p,result,rich_return=True)

        fig=MyFigure(figsize=(2,1.5))
        pl = fig.addplot(rect=[0.25,0.25,0.7,0.7])
        pl.plot(xdata,ydata,color=np.array([55,126,184])/255)
        pl.plot(xdata,ymodel,color='black')
        pl.ax.set_yticks([0,50,100])
        pl.xlabel(r'$I$ (pA)')
        pl.ylabel('Firing rate (Hz)')
        leg = pl.legend(['Simulation','Fit'],loc=2)
        leg.draw_frame(False)

        fig.save(self.figpath+'RatevsI'+self.version)
Ejemplo n.º 12
0
    def plot_fit_vary_param(self):
        with open(self.datapath+'fit_vary_param'+ self.version,'rb') as f:
            res = pickle.load(f)

        n_som2dend_list = res.keys()
        n_som2dend_list.remove('best_sqe')
        n_som2dend_list.remove('worst_sqe')
        n_som2dend_list.remove('monkey')

        sqe_list = list()
        for n_som2dend in n_som2dend_list:
            sqes = res[n_som2dend].values()
            sqe_list.append(np.median(sqes))
            
        fig=MyFigure(figsize=(2,1.7))
        pl = fig.addplot(rect=[0.3,0.3,0.65,0.65])
        pl.plot(n_som2dend_list,sqe_list,
            'o-',markeredgecolor='black',markerfacecolor='black',markersize=2,
            color=np.array([150,150,150])/255,linewidth=1.5,label='model')

        pl.plot(n_som2dend_list,[res['best_sqe']]*len(n_som2dend_list),
            '-',markeredgecolor='black',markerfacecolor='black',
            color=np.array([150,150,150])/255,linewidth=1.5,label='optimal')

        pylab.ylabel('Sum of squared errors')
        pylab.xlabel(r'$N_{\mathit{SOM}\rightarrow dend}$')
        #pl.ax.set_yticks([0.01,0.02,0.03])
        pl.ax.set_yticks([0,0.05,0.1])
        pl.ax.set_xticks([5,10,15,20])
        pylab.legend(loc=2,numpoints=1,frameon=False)

        #pl.plot(n_som2dend_list,[res['worst_sqe']]*len(n_som2dend_list),'--',markeredgecolor='black',markerfacecolor='black',linewidth=1.5)

        fig.save(self.figpath+ 'NewsomeFit_vary_param' + self.version)
Ejemplo n.º 13
0
    def plot_NevianFit(self):
        with open(self.datapath + 'learning_para_2014-11-10_0', 'rb') as f:
            para = pickle.load(f)
        experiment3B = 'NevianFig3B'
        with open(self.datapath + 'resultlist_' + experiment3B, 'rb') as f:
            result_list3B = pickle.load(f)
        experiment3D_full = 'NevianFig3D_full'
        with open(self.datapath + 'resultlist_' + experiment3D_full,
                  'rb') as f:
            result_list3D_full = pickle.load(f)
        experiment2_full = 'NevianFig2_full'
        with open(self.datapath + 'resultlist_' + experiment2_full, 'rb') as f:
            result_list2_full = pickle.load(f)

        remakeFig = True

        fig = MyFigure(figsize=(1.5, 1.5))
        pl = fig.addplot(rect=[0.3, 0.25, 0.65, 0.7])
        self.plot_model_result(pl,
                               para,
                               result_list2_full,
                               experiment2_full,
                               plot_data=True)
        #fig.save(self.figpath+'Fit'+experiment2_full+'_'+self.version)
        #compareWithNevian_CaTrace(para,remakeFig,experiment = 'NevianFig5')

        fig = MyFigure(figsize=(1.5, 1.5))
        pl = fig.addplot(rect=[0.3, 0.25, 0.65, 0.7])
        self.plot_model_result(pl,
                               para,
                               result_list3B,
                               experiment3B,
                               plot_data=True)
        #fig.save(self.figpath+'Fit'+experiment3B+'_'+self.version)
        #compareWithNevian_CaTrace(para,remakeFig,experiment = experiment3B)

        fig = MyFigure(figsize=(1.5, 1.5))
        pl = fig.addplot(rect=[0.3, 0.25, 0.65, 0.7])
        self.plot_model_result(pl,
                               para,
                               result_list3D_full,
                               experiment3D_full,
                               plot_data=True)
        fig.save(self.figpath + 'Fit' + experiment3D_full + '_' + self.version)
    def fit_DendVvsgErI(self):
        '''
        fit the dendritic voltage as a function of excitatory input and inhibitory rate
        '''
        with open(self.datapath+'DendVvsgErI'+self.version,'rb') as f:
            result = pickle.load(f)

        x0 = [5,10,7,1]
        bnds = ((1,20),(1,20),(1,20),(0,3))

        params = copy.copy(self.params)
        for key in result['params']:
            params[key] = result['params'][key] # overwrite the old value


        temp = params['pre_rate']*params['tauNMDARise']*params['tauNMDADecay']*params['alphaNMDA']
        print params['tauNMDARise']*params['tauNMDADecay']*params['alphaNMDA']
        # 0.06 is obtained from tau_rise = 2ms, tau_decay=100ms, alpha=0.3 /ms
        s_mean = temp/(1+temp) # mean gating variable
        result['Exc'] = result['weights']*params['gNMDA']*1e9*params['num_input']*s_mean
        # unit-less weights * synaptic conductance 2.5nS * 15 synapses * mean gating variable for 30Hz

        result['Inh'] = result['dend_inh_rates'] *params['tauGABA']*params['gGABA']*1e9
        # Total Rate * synaptic conductance * tau_GABA

        res = scipy.optimize.minimize(lambda p: self.obj_func_DendVvsgErI(p,result),
                                      x0,bounds=bnds,method='SLSQP',
                                      options={'maxiter':100, 'disp':True})
        print res.x
        p = res.x

        xdata = result['Exc']
        n_curve = len(result['vdend_mean_list'])

        fig=MyFigure(figsize=(2,1.5))
        pl = fig.addplot(rect=[0.25,0.25,0.7,0.7])

        for i in xrange(n_curve):
            ydata = result['vdend_mean_list'][i]*1000
            ax_data, = pl.plot(xdata,ydata,color=np.array([55,126,184])/255)

        ymodel_list, sqe = self.obj_func_DendVvsgErI(p,result,rich_return=True)
        for i in xrange(n_curve):
            ax_model, = pl.plot(xdata,ymodel_list[i],color='black')


        pl.xlabel(r'$g_{E,\mathrm{tot}}$ (nS)',labelpad = 3)
        pl.ylabel(r'$\overline{V}_D$ (mV)')
        pl.ax.set_xlim((0,50))
        pl.ax.set_xticks([0,25,50])
        pl.ax.set_ylim((-70,-10))
        pl.ax.set_yticks([-70,-20])
        leg = pl.legend([ax_data,ax_model],['Simulation','Fit'],loc=2, bbox_to_anchor=[0, 1.05])
        leg.draw_frame(False)

        fig.save(self.figpath+'DendVvsgErI'+self.version)
    def plot_voltagedistribution(self,denseinh = False):
        '''
        Plot voltage distribution
        '''
        p = dict()
        p['num_DendEach']=1
        p['dt'] = 0.2*ms
        p['num_Soma'] = 40
        p['pre_rate'] = 40*Hz
        p['inh_base'] = 5*Hz

        if denseinh:
            p['gGABA'] = p['gGABA']/10
            p['inh_base'] = p['inh_base']*10
            self.version = 'denseinh_' + self.version


        pre_rates = ones(p['num_Soma'])*p['pre_rate']

        model = MCM.Model(paramsfile=self.paramsfile,eqsfile=self.eqsfile,outsidePara=p)
        model.make_model_dendrite_only(num_soma = p['num_Soma'],clamped_somavolt=-60*mV,condition='invivo')
        model.make_dend_bkginh(inh_rates=p['inh_base'])
        model.single_pathway_gating_experiment(pre_rates, num_input=15,w_input = 1)
        model.make_network()
        model.reinit()
        net = Network(model)
        net.run(2.5*second,report='text')

        mon = model.monitor

        times = mon['MvDend'].times/ms
        plotstart = 500
        dendv = mon['MvDend'].values[:,times>plotstart]/mV
        dendv = dendv[range(0,p['num_DendEach']*p['num_Soma'],p['num_DendEach']),:]

        res = dict()
        res['params'] = p
        res['dendv'] = dendv


        with open(self.datapath+'voltage_distribution_'+self.version,'wb') as f:
            pickle.dump(res,f)

        fig=MyFigure(figsize=(1.5,1.5))
        pl = fig.addplot(rect=[0.05,0.3,0.9,0.65])
        #pl.ax.set_frame_on(False)
        pl.ax.spines['left'].set_visible(False)
        pl.ax.get_yaxis().set_visible(False)
        n, bins, patches = hist(dendv.flatten(), 50, normed=1, histtype='stepfilled')
        color_hist = array([99,99,99])/255
        setp(patches, 'facecolor', color_hist,'edgecolor',color_hist)
        xlim([-70,-10])
        xticks([-60,-50,-40,-30,-20],['-60','','-40','','-20'])
        xlabel('$V_D$ (mV)')
        fig.save(self.figpath+'VoltageDistribution_'+self.version)
Ejemplo n.º 16
0
    def plot_GABAABratio(self):
        with open(self.datapath+'GatingCapacity_varyGABAABratio'+self.version,'rb') as f:
            p = pickle.load(f)


        fig=MyFigure(figsize=(1.5,1.5))
        pl = fig.addplot(rect=[0.3,0.3,0.65,0.65])
        pl.plot(1-p['GABAA_prop_plot'],p['gs1_plot'],
        'o-', color=colorMatrix1[1],
        markeredgecolor = 'none', markersize=3)
        print p['gs1_plot']
        ylabel('Gating selectivity')
        ylim((0,1))
        xlim((0,1))
        yticks([0,0.5,1],['0','0.5','1'])
        xticks([0,0.5,1],['0','0.5','1'])
        xlabel(r'$\mathrm{GABA}_{\mathrm{B}}$ conductance ratio')
        fig.save(self.figpath+'GatingCapacity_varyGABAABratio'+self.version)
Ejemplo n.º 17
0
    def plot_basic_pathway_gating_slice(self, mode, plot_ylabel=True):
        with open(
                self.datapath + 'basic_pathway_gating_response_slice_' + mode +
                '_latest', 'rb') as f:
            p = pickle.load(f)
        #print p['firing_rate_plot']
        fig = MyFigure(figsize=(1.8, 0.75))
        pl = fig.addplot(rect=[0.25, 0.15, 0.55, 0.65])
        #pl.plot(p['firing_rate_plot'][:p['np']],color=colorMatrix[1],label='%d' % p['bkg_inh_rate'])
        #pl.plot(p['firing_rate_plot'][p['np']:],color=colorMatrix[5],label='%d' % (p['bkg_inh_rate']+p['dend_inh_rate']))
        pl.plot(p['firing_rate_plot'][:p['np']],
                color=colorMatrix[1],
                label='1')
        pl.plot(p['firing_rate_plot'][p['np']:],
                color=colorMatrix[5],
                label='2')

        #xlabel('Pathway 1 stimulus')
        #xticks([p['np']//2],['preferred'])
        xticks([p['np'] // 2], [''])

        if mode in ['prelearning', 'postlearning']:
            maxr = 25
        else:
            maxr = p['firing_rate_plot'].max()
        pl.ax.set_ylim((0, maxr))
        pl.ax.set_yticks([0, maxr // 5 * 5])
        if plot_ylabel:
            ylabel('Output rate (Hz)')
            leg = legend(title='Open gate',
                         loc=1,
                         bbox_to_anchor=[1.0, 1.35],
                         frameon=False)
        else:
            pl.ax.set_yticklabels(['', ''])
        fig.save(self.figpath + 'basic_pathway_gating_slice_' + mode +
                 self.version)

        ron = np.max(p['firing_rate_plot'][:p['np']]) - np.min(
            p['firing_rate_plot'][:])
        roff = np.max(p['firing_rate_plot'][p['np']:]) - np.min(
            p['firing_rate_plot'][:])

        print 'Gating selectivity is %0.2f' % ((ron - roff) / (ron + roff))
Ejemplo n.º 18
0
    def plot_fit_vary_param(self):
        with open(self.datapath + 'fit_vary_param' + self.version, 'rb') as f:
            res = pickle.load(f)

        n_som2dend_list = res.keys()
        n_som2dend_list.remove('best_sqe')
        n_som2dend_list.remove('worst_sqe')
        n_som2dend_list.remove('monkey')

        sqe_list = list()
        for n_som2dend in n_som2dend_list:
            sqes = res[n_som2dend].values()
            sqe_list.append(np.median(sqes))

        fig = MyFigure(figsize=(2, 1.7))
        pl = fig.addplot(rect=[0.3, 0.3, 0.65, 0.65])
        pl.plot(n_som2dend_list,
                sqe_list,
                'o-',
                markeredgecolor='black',
                markerfacecolor='black',
                markersize=2,
                color=np.array([150, 150, 150]) / 255,
                linewidth=1.5,
                label='model')

        pl.plot(n_som2dend_list, [res['best_sqe']] * len(n_som2dend_list),
                '-',
                markeredgecolor='black',
                markerfacecolor='black',
                color=np.array([150, 150, 150]) / 255,
                linewidth=1.5,
                label='optimal')

        pylab.ylabel('Sum of squared errors')
        pylab.xlabel(r'$N_{\mathit{SOM}\rightarrow dend}$')
        #pl.ax.set_yticks([0.01,0.02,0.03])
        pl.ax.set_yticks([0, 0.05, 0.1])
        pl.ax.set_xticks([5, 10, 15, 20])
        pylab.legend(loc=2, numpoints=1, frameon=False)

        #pl.plot(n_som2dend_list,[res['worst_sqe']]*len(n_som2dend_list),'--',markeredgecolor='black',markerfacecolor='black',linewidth=1.5)

        fig.save(self.figpath + 'NewsomeFit_vary_param' + self.version)
 def plot_DendVvsgErI(self):
     with open(self.datapath+'DendVvsgErI'+self.version,'rb') as f:
         res = pickle.load(f)
     fig=MyFigure(figsize=(4,3))
     pl = fig.addplot(rect=[0.2,0.15,0.7,0.8])
     i = 0
     for vdend_mean in res['vdend_mean_list']:
         pl.plot(res['params']['weights'],vdend_mean/mV,
                       label='%d' % res['dend_inh_rates'][i])
         xlabel('Weight')
         ylabel('Mean Dendritic Voltage (mV)')
         i += 1
     pl.ax.set_xlim((0,2))
     pl.ax.set_xticks([0,1,2])
     pl.ax.set_ylim((-70,-10))
     pl.ax.set_yticks([-70,-50,-30,-10])
     leg=legend(title='Inhibition (Hz)',loc=2)
     leg.draw_frame(False)
     fig.save(self.figpath+'DendVvsgErI'+self.version)
Ejemplo n.º 20
0
    def fit_RatevsDendV(self):
        '''
        fit the somatic firing rate as a function of mean dendritic voltage
        '''
        with open(self.datapath + 'RatevsDendV' + self.version, 'rb') as f:
            result = pickle.load(f)

        x0 = [1.5, 0.08, 2.2]
        bnds = ((0, 5), (0, 1), (1, 3))

        params = copy.copy(self.params)
        for key in result['params']:
            params[key] = result['params'][key]  # overwrite the old value

        res = scipy.optimize.minimize(
            lambda p: self.obj_func_RatevsDendV(p, result),
            x0,
            bounds=bnds,
            method='SLSQP',
            options={
                'maxiter': 100,
                'disp': True
            })
        print res.x
        p = res.x

        xdata = result['clamped_dendvolt_list'] + 70
        ydata = result['fr_list']
        ymodel, _ = self.obj_func_RatevsDendV(p, result, rich_return=True)

        fig = MyFigure(figsize=(2, 1.5))
        pl = fig.addplot(rect=[0.25, 0.25, 0.7, 0.7])
        pl.plot(xdata - 70, ydata, color=np.array([55, 126, 184]) / 255)
        pl.plot(xdata - 70, ymodel, color='black')
        pl.ax.set_xticks([-70, -60, -50, -40])
        pl.ax.set_yticks([0, 50, 100, 150])
        pl.xlabel(r'$\langle \overline{V}_D\rangle$ (mV)')
        pl.ylabel('Firing rate (Hz)')
        leg = pl.legend(['Simulation', 'Fit'], loc=2)
        leg.draw_frame(False)

        fig.save(self.figpath + 'RatevsDendV' + self.version)
 def plot_DendVvsgErI(self):
     with open(self.datapath + 'DendVvsgErI' + self.version, 'rb') as f:
         res = pickle.load(f)
     fig = MyFigure(figsize=(4, 3))
     pl = fig.addplot(rect=[0.2, 0.15, 0.7, 0.8])
     i = 0
     for vdend_mean in res['vdend_mean_list']:
         pl.plot(res['params']['weights'],
                 vdend_mean / mV,
                 label='%d' % res['dend_inh_rates'][i])
         xlabel('Weight')
         ylabel('Mean Dendritic Voltage (mV)')
         i += 1
     pl.ax.set_xlim((0, 2))
     pl.ax.set_xticks([0, 1, 2])
     pl.ax.set_ylim((-70, -10))
     pl.ax.set_yticks([-70, -50, -30, -10])
     leg = legend(title='Inhibition (Hz)', loc=2)
     leg.draw_frame(False)
     fig.save(self.figpath + 'DendVvsgErI' + self.version)
Ejemplo n.º 22
0
 def plot_Newsome_statespace_legend(self):
     i_dim = 0
     n_m = 6
     for colors in [motion_colors,color_colors]:
         mks = 4
         fig=MyFigure(figsize=(0.75,0.2))
         pl = fig.addplot(rect=[0.05,0.05,0.9,0.9])
         for i_coh in xrange(n_m):
             if i_coh<(n_m/2):
                 mfc = 'white'
                 mec = colors[i_coh]
             else:
                 mfc = colors[n_m-i_coh-1]
                 mec = mfc
             pl.plot(i_coh,0,'o',markerfacecolor=mfc,markeredgecolor=mec,markersize=mks)
         pl.ax.set_frame_on(False)
         pl.ax.set_yticks([])
         pl.ax.set_xticks([])
         fig.save(self.figpath+'plot_Newsome_statespace_legend_%d' % i_dim)
         i_dim += 1
Ejemplo n.º 23
0
    def fit_RatevsI(self):
        '''
        fit the somatic firing rate as a function of current injection
        '''
        with open(self.datapath + 'RatevsI' + self.version, 'rb') as f:
            result = pickle.load(f)

        x0 = [174.85951028, 45.16030095, 2.89003711]
        bnds = ((100, 500), (10, 1000), (0, 5))

        res = scipy.optimize.minimize(
            lambda p: self.obj_func_RatevsI(p, result),
            x0,
            bounds=bnds,
            method='SLSQP',
            options={
                'maxiter': 100,
                'disp': True
            })
        print res.x
        p = res.x

        xdata = result['clamped_current_list']
        ydata = result['fr_list']
        ymodel, _ = self.obj_func_RatevsI(p, result, rich_return=True)

        fig = MyFigure(figsize=(2, 1.5))
        pl = fig.addplot(rect=[0.25, 0.25, 0.7, 0.7])
        pl.plot(xdata, ydata, color=np.array([55, 126, 184]) / 255)
        pl.plot(xdata, ymodel, color='black')
        pl.ax.set_yticks([0, 50, 100])
        pl.xlabel(r'$I$ (pA)')
        pl.ylabel('Firing rate (Hz)')
        leg = pl.legend(['Simulation', 'Fit'], loc=2)
        leg.draw_frame(False)

        fig.save(self.figpath + 'RatevsI' + self.version)
    def plot_sNMDAmean(self):
        p = MCM.read_params(self.paramsfile)

        def meansNMDA(rate, p):
            x_mean = rate * p['tauNMDARise']
            temp = p['alphaNMDA'] * p['tauNMDADecay'] * x_mean
            s_mean = temp / (1 + temp)
            return s_mean

        theta = 0.645  # make threshold around 30 Hz
        #theta = 0.6784
        gGABA = 0.6
        # NMDA channel voltage-glutamate input relationship
        fig = MyFigure(figsize=(1.9, 1.5))
        pl = fig.addplot([0.4, 0.3, 0.5, 0.65])
        rates = linspace(0, 300, 100)
        meanNMDAplot = meansNMDA(rates, p)
        meanNMDAplot2 = meanNMDAplot / (1 + gGABA)
        pl.plot([0, 300], [theta] * 2,
                '--',
                color=array([189, 189, 189]) / 255)
        pl.plot(rates, meanNMDAplot, color=colorMatrix[1], label='0')
        pl.plot(rates,
                meanNMDAplot2,
                color=colorMatrix[5],
                label='%0.1f' % gGABA)

        xlabel('NMDA input rate (Hz)')
        ylabel('$g_{\mathrm{NMDA}}/(g_L+g_{\mathrm{GABA}})$')
        pl.ax.set_yticks([0, theta])
        pl.ax.set_yticklabels(['0', r'$\theta_{\mathrm{NMDA}}$'])
        pl.ax.set_xticks([0, 150, 300])
        leg = legend(title='$g_{\mathrm{GABA}}/g_L$',
                     loc=4,
                     bbox_to_anchor=[1.2, -0.05])
        leg.draw_frame(False)
        fig.save(self.figpath + 'sNMDAmean' + self.version)
    def fit_RatevsDendV(self):
        '''
        fit the somatic firing rate as a function of mean dendritic voltage
        '''
        with open(self.datapath+'RatevsDendV'+self.version,'rb') as f:
            result = pickle.load(f)

        x0 = [1.5,0.08,2.2]
        bnds = ((0,5),(0,1),(1,3))

        params = copy.copy(self.params)
        for key in result['params']:
            params[key] = result['params'][key] # overwrite the old value

        res = scipy.optimize.minimize(lambda p: self.obj_func_RatevsDendV(p,result),
                                      x0,bounds=bnds,method='SLSQP',
                                      options={'maxiter':100, 'disp':True})
        print res.x
        p = res.x

        xdata = result['clamped_dendvolt_list'] + 70
        ydata = result['fr_list']
        ymodel, _ = self.obj_func_RatevsDendV(p,result,rich_return=True)

        fig=MyFigure(figsize=(2,1.5))
        pl = fig.addplot(rect=[0.25,0.25,0.7,0.7])
        pl.plot(xdata-70,ydata,color=np.array([55,126,184])/255)
        pl.plot(xdata-70,ymodel,color='black')
        pl.ax.set_xticks([-70,-60,-50,-40])
        pl.ax.set_yticks([0,50,100,150])
        pl.xlabel(r'$\langle \overline{V}_D\rangle$ (mV)')
        pl.ylabel('Firing rate (Hz)')
        leg = pl.legend(['Simulation','Fit'],loc=2)
        leg.draw_frame(False)

        fig.save(self.figpath+'RatevsDendV'+self.version)
Ejemplo n.º 26
0
    def quick_runNewsome_psychometric(self,p,savenew=True,savename=''):
        datacolor3 = np.array([150,150,150])/255
        modelcolor3 = np.array([37,37,37])/255

        m_options = np.array([-0.5,-0.15,-0.05,0.05,0.15,0.5])
        c_options = np.array([-0.5,-0.18,-0.06,0.06,0.18,0.5])
        n_options = 6
        mks = 5

        n_plot = 51
        coh_plot = np.linspace(-0.6,0.6,n_plot)
        performance_plot_m = np.zeros((n_options,n_plot))
        for i_c in xrange(n_options):
            for i_m in xrange(n_plot):
                c = c_options[i_c]
                m = coh_plot[i_m]
                performance = self.quick_Newsome_model(p,m,c)
                performance_plot_m[i_c,i_m] += performance*100

        fig=MyFigure(figsize=(4.5,1.7))
        pl = fig.addplot(rect=[0.1,0.3,0.24,0.6])
        pl.plot(m_options*100,self.p_m_m*100,'o',color=datacolor3,markeredgecolor=datacolor3,label='Data',markersize=mks)
        pl.plot(coh_plot*100,performance_plot_m.mean(axis=0),color = modelcolor3,label='Model')
        pylab.ylim([-5,105])
        pylab.yticks([0,25,50,75,100])
        pylab.xticks([-50,-15,15,50],['-50\n Left','-15','15','50\n Right'])
        pylab.ylabel('Choices to right (%)')
        pylab.xlabel('Motion coherence')
        leg = pylab.legend(loc=2,numpoints=1, bbox_to_anchor=(-0.03, 1.15))
        leg.draw_frame(False)

        m_options = c_options[:]
        performance_plot_c = np.zeros((n_options,n_plot))
        for i_m in xrange(n_options):
            for i_c in xrange(n_plot):
                c = coh_plot[i_c]
                m = m_options[i_m]
                performance = self.quick_Newsome_model(p,m,c)
                performance_plot_c[i_m,i_c] += performance*100

        pl = fig.addplot(rect=[0.44,0.3,0.24,0.6])
        pl.plot(c_options*100,self.p_m_c*100,'o',color=datacolor3,markeredgecolor=datacolor3,label='Data',markersize=mks)
        pl.plot(coh_plot*100,performance_plot_c.mean(axis=0),color = modelcolor3,label='Model')
        pylab.ylim([-5,105])
        pylab.yticks([0,25,50,75,100],[])
        pylab.xticks([-50,-15,15,50],['-50\n Red','-15','15','50\n Green'])
        pylab.xlabel('Color coherence')
        pylab.ylabel('Choices to green (%)')
        #title('Motion Context')
        leg = pylab.legend(loc=2,numpoints=1, bbox_to_anchor=(-0.03, 1.15))
        leg.draw_frame(False)

        pl = fig.addplot(rect=[0.73,0.3,0.24,0.6])
        for i_m in xrange(n_options//2):
            pl.plot(coh_plot*100,(performance_plot_c[i_m,:]+performance_plot_c[-1-i_m,:])/2,color=motion_colors4[-i_m-1])
        pylab.ylim([-5,105])
        pylab.yticks([0,25,50,75,100],[])
        pylab.xticks([-50,-15,15,50],['-50\n Red','-15','15','50\n Green'])
        leg = pylab.legend(['Strong','Medium','Weak'],title='Motion coherence',loc=2,bbox_to_anchor=(-0.1, 1.2))
        leg.draw_frame(False)
        pylab.xlabel('Color coherence')

        if savenew:
            fig.save(self.figpath+'CompareWithNewsomePsychometric_'+savename+self.monkey+self.version)

        combined_panel = True
        if combined_panel:
            mks = 3
            fig=MyFigure(figsize=(1.85,1.5))
            pl = fig.addplot(rect=[0.3,0.25,0.6,0.55])
            pl.plot(c_options*100,self.p_m_c*100,'o',color=np.array([8,29,88])/255,
                    markeredgecolor=np.array([8,29,88])/255,markersize=mks,label='Data - Color context')
            pl.plot(coh_plot*100,performance_plot_c.mean(axis=0),color = np.array([8,29,88])/255)
            pl.plot(m_options*100,self.p_m_m*100,'o',color=np.array([65,182,196])/255,
                    markeredgecolor=np.array([65,182,196])/255,label='Data - Motion context',markersize=mks)
            pl.plot(coh_plot*100,performance_plot_m.mean(axis=0),color = np.array([65,182,196])/255,label='Model')
            pylab.ylim([-5,105])
            pylab.yticks([0,25,50,75,100])
            pylab.xticks([-50,-15,15,50],['-50','-15','15','50'])
            pylab.ylabel('Choices to right (%)')
            pylab.xlabel('Motion coherence to right')
            leg = pylab.legend(loc=2,numpoints=1, bbox_to_anchor=(-0.03, 1.35))
            leg.draw_frame(False)
            fig.save(self.figpath+'CompareWithNewsomePsychometric_combpanel_'+savename+self.monkey+self.version)
    def plot_EvsDI(self,name = 'NMDA',denseinh = False,bothinh = True,rate_range=60):
        '''
        plot mean dendritic voltage as a function of excitatory input rate,
        and inhibitory rate
        '''

        if denseinh:
            di = 'denseinh_'
            k = 10
        else:
            di = ''
            k = 1

        name_append = di+name+('_range%d' % rate_range)+self.version

        with open(self.datapath+'EvsDI_'+di+name+('_range%d' % rate_range)+'_latest.pkl','rb') as f:
            res = pickle.load(f)

        if rate_range>100:
            figsize = (1.5,1.3)
            ylim = (-70,0)
            yticks =  [-70,-10]
            rect = [0.25,0.3,0.65,0.65]
        else:
            figsize = (1.3,1.3)
            ylim = (-70,-10)
            yticks =  [-70,-20]
            rect = [0.3,0.3,0.65,0.65]

        fig=MyFigure(figsize=figsize)
        pl = fig.addplot(rect=rect)
        pl.plot(res['pre_rates'],res['vDend_mean'][0],color=colorMatrix[1],label='0')
        print res['vDend_mean'][0]
        if bothinh:
            pl.plot(res['pre_rates'],res['vDend_mean'][30],color=colorMatrix[5],label='30')
        #leg=legend(title='Inhibition (Hz)',loc=2, bbox_to_anchor=[-0.05, 1.05],frameon=False)
        pl.ax.set_ylim(ylim)
        pl.ax.set_yticks(yticks)
        xticks = [0,int(rate_range/2),rate_range]
        pl.ax.set_xticks(xticks)
        #xlabel('Rate of %d ' % p['num_inputeach']+name+' inputs (Hz)' )
        xlabel('Rate (Hz)')
        if name is 'NMDA':
            ylabel('$\overline{V}_D$ (mV)',labelpad=-5)
        else:
            pl.ax.set_yticklabels(['',''])
        if bothinh:
            fig.save(self.figpath+'EvsDI_'+name_append)
        else:
            fig.save(self.figpath+'EvsDI_preinh_'+name_append)

        if name is 'NMDA':
            inh_list = res['vDend_mean'].keys()
            inh_list = sort(inh_list)
            fig=MyFigure(figsize=(2.2,1.6))
            pl = fig.addplot(rect=[0.25,0.25,0.7,0.7])
            for i in xrange(len(inh_list)):
                color = colorMatrix[i+1,:]
                pl.plot(res['pre_rates'],res['vDend_mean'][inh_list[i]],
                        color=color,label='%d' % (inh_list[i]*k))

            leg=legend(title='Inhibition (Hz)',loc=2, bbox_to_anchor=[0.02, 1.05],frameon=False)
            pl.ax.set_ylim((-70,-10))
            pl.ax.set_yticks([-70,-20])
            pl.ax.set_xticks(xticks)
            #xlabel('Rate of %d ' % p['num_inputeach']+name+' inputs (Hz)' )
            xlabel('Excitatory input rate (Hz)')
            ylabel('Mean dendritic voltage (mV)',labelpad=5)
            fig.save(self.figpath+'EvsDI_full_'+name_append)
Ejemplo n.º 28
0
    def plot_WeightChangevsInitWeight(self):
        post_rate = 10
        with open(self.datapath + 'learning_para_2014-11-10_0', 'rb') as f:
            para = pickle.load(f)
        q = para.copy()
        with open(
                self.datapath + 'WeightChangevsInitWeight_postr%d' % post_rate,
                'rb') as f:
            resultlist = pickle.load(f)
        # in vivo change (see Higgins, Graupner, Brunel 2014)
        q = self.invivo_learningparams(q)

        vDend_mean_list = list()

        fig = MyFigure(figsize=(4, 3))
        pl = fig.addplot(rect=[0.2, 0.15, 0.7, 0.8])
        pl.plot([q['w0'], q['w1']], [q['w0'], q['w1']],
                color='black',
                linestyle='--')

        i = 0
        for result in resultlist:
            p = result['params']
            vDend = result['vDend']
            NMDACasyn = result['NMDACasyn']
            bAPCa = result['bAPCa']

            vDend_mean = vDend.mean(axis=1)

            vDend_mean = vDend_mean.reshape(p['n_weight'], p['n_rep'])
            vDend_mean = vDend_mean.mean(axis=1)
            vDend_mean_list.append(vDend_mean)

            num_syn = NMDACasyn.shape[0]
            num_soma = bAPCa.shape[0]
            synsomaratio = num_syn // num_soma

            bAPCasyn = bAPCa.repeat(synsomaratio, axis=0)
            CaTrace = NMDACasyn * q['NMDA_scaling'] + bAPCasyn * q[
                'bAP_scaling']

            w_post = np.zeros(num_syn)

            n_eachweight = num_syn // p['n_weight']
            total_time = 3000  #s
            record_dt = p['record_dt']
            for i_syn in xrange(num_syn):
                CaTraceSorted = np.sort(CaTrace[i_syn])

                AlphaP = MCM.crossthresholdtime(
                    CaTraceSorted,
                    q['thetaP']) * record_dt * (total_time / p['runtime'])
                AlphaD = MCM.crossthresholdtime(
                    CaTraceSorted,
                    q['thetaD']) * record_dt * (total_time / p['runtime'])

                wpre = p['weights'][i_syn // n_eachweight]
                wpost_syn = MCM.SynapseChange(wpre, AlphaP, AlphaD, q)
                w_post[i_syn] = wpost_syn

            w_post = w_post.reshape(p['n_weight'], n_eachweight)
            w_post = w_post.mean(axis=1)

            ax, = pl.plot(p['weights'],
                          w_post,
                          color=colorMatrix[i * 0, :],
                          label='%d' % result['dend_inh_rate'])
            i += 1

        plt.xlabel('Weight before learning')
        plt.ylabel('Weight after learning')
        pl.ax.set_plt.xlim((0, 3))
        pl.ax.set_xticks([0, 1, 2, 3])
        pl.ax.set_plt.ylim((0, 3))
        pl.ax.set_yticks([0, 1, 2, 3])
        leg = plt.legend(title='Inhibition (Hz)', loc=2)
        leg.draw_frame(False)
        axis('equal')
        #title('%d NMDA inputs of %d Hz' % (num_input,pre_rate))
        fig.save(self.figpath + ('WeightChangevsInitWeight_%d' % post_rate) +
                 self.version)
Ejemplo n.º 29
0
    def plot_vary_inh(self,savenew=True,plot_ylabel=True):
        p = MCM.read_params(self.paramsfile)
        p['inh_rate_base'] = 5


        p['num_soma'] = 1
        p['num_DendEach'] = 10
        p['num_path'] = 2
        p['num_DendDisinh'] = 3

        p['mode'] = 'control_voltage'
        p['v_target'] = -40


        single_gating_list = list()

        single_gating_nonoverlap_list = list()
        num_dend_list = list()
        leg_list = list()
        inh_list = [30,20,10]

        for inh in inh_list:
            p['inh_rate_max'] = inh + p['inh_rate_base']
            p['inh_base'] = p['inh_rate_base']*p['tauGABA']*p['gGABA']/nsiemens  # rate * tau_GABA * gGABA
            p['inh_max'] = p['inh_rate_max']*p['tauGABA']*p['gGABA']/nsiemens  # rate * tau_GABA * gGABA
            num_dend_plot = range(p['num_DendDisinh'],50)

            single_gating_plot = list()

            for num_dend in num_dend_plot:
                p['num_DendEach'] = num_dend

                res = self.analytic_evalgating(p)

                single_gating_plot.append(res['single_gating'])

            num_dend_list.append(num_dend_plot)
            single_gating_list.append(single_gating_plot)
            leg_list.append(str(inh))

            res = self.analytic_evalgating(p,no_overlap=True)
            single_gating_nonoverlap_list.append(res['single_gating'])

        # Single path
        fig=MyFigure(figsize=(1.5,1.5))
        pl = fig.addplot(rect=[0.3,0.3,0.65,0.65])
        for i in xrange(len(inh_list)):
            pl.plot(num_dend_list[i][0]/array(num_dend_list[i]),single_gating_list[i],
                    color=colorMatrix1[2*i+1])
        ylim((0,1))
        xlim((0,1))
        xticks([0,0.5,1],['0','0.5','1'])
        xlabel('$N_{disinh}/N_{dend}$')
        if plot_ylabel:
            ylabel('Gating selectivity')
            yticks([0,0.5,1],['0','0.5','1'])
        else:
            yticks([0,0.5,1],['','',''])
        leg = legend(leg_list,title='Disinhibition (Hz)',loc=1, bbox_to_anchor=[1.1, 1.1])
        leg.draw_frame(False)
        for i in xrange(len(inh_list)):
            pl.plot([0],single_gating_nonoverlap_list[i],'D',markerfacecolor=colorMatrix1[2*i+1],
                    markeredgecolor = 'none',markersize=4)
        if savenew:
            fig.save(self.figpath+'GatingCapacitySinglePathVaryInh'+self.version)
Ejemplo n.º 30
0
    def plot_WeightChangevsrE(self):
        '''
        Plot weight change when varying excitatory input rate
        '''
        with open(self.datapath + 'resultlist_varyrate_postr10', 'rb') as f:
            result_list = pickle.load(f)

        with open(self.datapath + 'learning_para_2014-11-10_0', 'rb') as f:
            para = pickle.load(f)
        q = para.copy()
        # in vivo change (see Higgins, Graupner, Brunel 2014)
        #q['NMDA_scaling'] = q['NMDA_scaling']*1.5/2
        #q['bAP_scaling'] = q['bAP_scaling']/5

        vDend_mean_list = list()
        w_post_list = list()
        AlphaP_list = list()
        AlphaD_list = list()
        for result in result_list:
            p = result['params']
            vDend = result['vDend']
            NMDACasyn = result['NMDACasyn']
            bAPCa = result['bAPCa']

            vDend_mean = vDend.mean(axis=1)
            vDend_mean_list.append(vDend_mean)

            num_syn = NMDACasyn.shape[0]
            num_soma = bAPCa.shape[0]
            synsomaratio = num_syn // num_soma

            bAPCasyn = bAPCa.repeat(synsomaratio, axis=0)
            CaTrace = NMDACasyn * q['NMDA_scaling'] + bAPCasyn * q[
                'bAP_scaling']

            w_post = zeros(num_syn)
            AlphaP_plot = zeros(num_syn)
            AlphaD_plot = zeros(num_syn)

            n_eachrate = num_syn // p['n_rate']
            repeat_times = 5
            record_dt = p['record_dt']
            for i_syn in xrange(num_syn):
                CaTraceSorted = sort(CaTrace[i_syn])

                AlphaP = MCM.crossthresholdtime(
                    CaTraceSorted, q['thetaP']) * record_dt * repeat_times
                AlphaD = MCM.crossthresholdtime(
                    CaTraceSorted, q['thetaD']) * record_dt * repeat_times

                wpre = 1
                wpost_syn = MCM.SynapseChange(wpre, AlphaP, AlphaD, q)
                w_post[i_syn] = wpost_syn
                AlphaP_plot[i_syn] = AlphaP
                AlphaD_plot[i_syn] = AlphaD

            w_post = w_post.reshape(p['n_rate'], n_eachrate)
            w_post = w_post.mean(axis=1)
            w_post_list.append(w_post)
            AlphaP_list.append(AlphaP_plot)
            AlphaD_list.append(AlphaD_plot)

        dend_inh_rates = p['dend_inh_rates']

        colorMatrix = array([[65, 182, 196], [34, 94, 168], [8, 29, 88]]) / 255

        fig = MyFigure(figsize=(2.5, 2.5))
        pl = fig.addplot(rect=[0.2, 0.25, 0.7, 0.7])
        plotlist = list()
        i = 0
        for vDend_mean in vDend_mean_list:
            ax, = pl.plot(p['pre_rates'],
                          vDend_mean / mV,
                          color=colorMatrix[i, :])
            plotlist.append(ax)
            xlabel('Pre-synaptic rate (Hz)')
            ylabel('Mean Dendritic Voltage (mV)')
            i += 1
        pl.ax.set_xticks([0, 20, 40])
        pl.ax.set_ylim((-70, -10))
        pl.ax.set_yticks([-70, -50, -30, -10])
        leg = legend(plotlist, ['%d' % r for r in dend_inh_rates],
                     title='Inhibition (Hz)',
                     loc=2)
        leg.draw_frame(False)
        #fig.save('figures/RateVsInhibition'+self.version)

        fig = MyFigure(figsize=(2, 2))
        pl = fig.addplot(rect=[0.2, 0.2, 0.7, 0.7])
        pl.plot([0, max(p['pre_rates'])], [1, 1],
                color=array([189, 189, 189]) / 255)
        i = 0
        plotlist = list()
        for w_post in w_post_list:
            ax, = pl.plot(p['pre_rates'], w_post, color=colorMatrix[i, :])
            plotlist.append(ax)
            xlabel('Pre-synaptic rate (Hz)')
            ylabel('Weight change')
            i += 1
        pl.ax.set_xticks([0, 20, 40])
        pl.ax.set_ylim((0, 3))
        pl.ax.set_yticks([0, 1, 2, 3])
        leg = legend(plotlist, ['%d' % r for r in dend_inh_rates],
                     title='Inhibition (Hz)',
                     loc=2)
        leg.draw_frame(False)
        #title('post rate = %d Hz' % p['post_rate'])
        fig.save(self.figpath + 'WeightChangevsrE_postr%d' % p['post_rate'] +
                 self.version)
    def plot_WeightChangevsInitWeight(self):
        post_rate = 10
        with open(self.datapath+'learning_para_2014-11-10_0','rb') as f:
            para = pickle.load(f)
        q = para.copy()
        with open(self.datapath+'WeightChangevsInitWeight_postr%d' % post_rate,'rb') as f:
            resultlist = pickle.load(f)
        # in vivo change (see Higgins, Graupner, Brunel 2014)
        q = self.invivo_learningparams(q)

        vDend_mean_list = list()

        fig=MyFigure(figsize=(4,3))
        pl = fig.addplot(rect=[0.2,0.15,0.7,0.8])
        pl.plot([q['w0'],q['w1']],[q['w0'],q['w1']],color='black',linestyle='--')

        i = 0
        for result in resultlist:
            p = result['params']
            vDend = result['vDend']
            NMDACasyn = result['NMDACasyn']
            bAPCa = result['bAPCa']

            vDend_mean = vDend.mean(axis=1)

            vDend_mean = vDend_mean.reshape(p['n_weight'],p['n_rep'])
            vDend_mean = vDend_mean.mean(axis=1)
            vDend_mean_list.append(vDend_mean)


            num_syn = NMDACasyn.shape[0]
            num_soma = bAPCa.shape[0]
            synsomaratio = num_syn//num_soma

            bAPCasyn = bAPCa.repeat(synsomaratio,axis=0)
            CaTrace = NMDACasyn*q['NMDA_scaling'] + bAPCasyn*q['bAP_scaling']

            w_post = np.zeros(num_syn)

            n_eachweight = num_syn//p['n_weight']
            total_time = 3000 #s
            record_dt = p['record_dt']
            for i_syn in xrange(num_syn):
                CaTraceSorted = np.sort(CaTrace[i_syn])

                AlphaP = MCM.crossthresholdtime(CaTraceSorted,q['thetaP'])*record_dt*(total_time/p['runtime'])
                AlphaD = MCM.crossthresholdtime(CaTraceSorted,q['thetaD'])*record_dt*(total_time/p['runtime'])

                wpre = p['weights'][i_syn//n_eachweight]
                wpost_syn = MCM.SynapseChange(wpre,AlphaP,AlphaD,q)
                w_post[i_syn] = wpost_syn

            w_post = w_post.reshape(p['n_weight'],n_eachweight)
            w_post = w_post.mean(axis=1)

            ax, = pl.plot(p['weights'],w_post,color=colorMatrix[i*0,:],label='%d' % result['dend_inh_rate'])
            i += 1

        plt.xlabel('Weight before learning')
        plt.ylabel('Weight after learning')
        pl.ax.set_plt.xlim((0,3))
        pl.ax.set_xticks([0,1,2,3])
        pl.ax.set_plt.ylim((0,3))
        pl.ax.set_yticks([0,1,2,3])
        leg=plt.legend(title='Inhibition (Hz)',loc=2)
        leg.draw_frame(False)
        axis('equal')
        #title('%d NMDA inputs of %d Hz' % (num_input,pre_rate))
        fig.save(self.figpath+('WeightChangevsInitWeight_%d' % post_rate)+self.version)
Ejemplo n.º 32
0
    def fit_experiment(self):
        global Nfeval
        experiment3B = 'NevianFig3B'
        with open(self.datapath + 'resultlist_' + experiment3B, 'rb') as f:
            result_list3B = pickle.load(f)
        experiment3D = 'NevianFig3D'
        with open(self.datapath + 'resultlist_' + experiment3D, 'rb') as f:
            result_list3D = pickle.load(f)
        experiment3D_full = 'NevianFig3D_full'
        with open(self.datapath + 'resultlist_' + experiment3D_full,
                  'rb') as f:
            result_list3D_full = pickle.load(f)
        experiment2 = 'NevianFig2'
        with open(self.datapath + 'resultlist_' + experiment2, 'rb') as f:
            result_list2 = pickle.load(f)
        experiment2_full = 'NevianFig2_full'
        with open(self.datapath + 'resultlist_' + experiment2_full, 'rb') as f:
            result_list2_full = pickle.load(f)

        x0 = list()
        bnds = list()
        # The following is the most up-to-date parameters fitting Nevian Fig.2

        x0.append(0.371)  # NMDA scaling parameter
        bnds.append([0.3, 3])
        x0.append(0.957)  # bAP scaling
        bnds.append([0.4, 1])
        x0.append(39.949)  # induced depression strength
        bnds.append([20, 500])
        x0.append(177.552)  # induced potentiation strength
        bnds.append([50, 500])
        #x0.append(346.833)      # synaptic learning time constant (s)
        #bnds.append([50,700])
        x0.append(
            2.78)  # potentiation threshold (this parameter is very important)
        bnds.append([1.2, 3])
        #x0.append(20)
        #bnds.append([12,100]) # Ca time constant (ms)
        #x0.append(0.647)
        #bnds.append([0.35,70]) # noise constant sigma

        start = time.clock()
        # Fit the model to some of the data but not all
        obj_func = lambda para: \
        0*self.get_model_sqe(para, result_list3B, experiment3B) + \
        1*self.get_model_sqe(para, result_list3D, experiment3D) + \
        1*self.get_model_sqe(para, result_list2, experiment2)
        Nfeval = 1

        def callbackF(Xi):
            global Nfeval
            if Nfeval == 1:
                print 'N  f     NMDA   bAP   wpre    w1   gP      tau      tau_Ca'
            print('%2d %0.3f ' % (Nfeval, obj_func(Xi)) +
                  ' '.join('{:0.3f}'.format(k) for k in Xi))

            Nfeval += 1

        res = scipy.optimize.minimize(obj_func,
                                      x0,
                                      bounds=bnds,
                                      method='SLSQP',
                                      options={
                                          'maxiter': 300,
                                          'disp': True
                                      },
                                      callback=callbackF)
        x = res.x
        print('%2d %0.3f ' % (Nfeval, obj_func(x)) +
              ' '.join('{:0.3f}'.format(k) for k in x))

        end = time.clock()
        print 'time spent %0.6f' % (end - start)

        sqe, change_list, wpost_list, para = self.get_model_sqe(
            x, result_list2, rich_return=True)

        fig = MyFigure(figsize=(2, 2))
        pl = fig.addplot(rect=[0.2, 0.15, 0.7, 0.8])
        self.plot_model_result(pl,
                               para,
                               result_list2_full,
                               experiment2_full,
                               plot_data=True)
        self.compareWithNevian_CaTrace(para,
                                       remakeFig=False,
                                       experiment='NevianFig5')

        fig = MyFigure(figsize=(1.5, 2))
        pl = fig.addplot(rect=[0.2, 0.15, 0.7, 0.8])
        self.plot_model_result(pl,
                               para,
                               result_list3B,
                               experiment3B,
                               plot_data=True)
        #compareWithNevian_CaTrace(para,remakeFig = False,experiment = experiment3B)

        fig = MyFigure(figsize=(1.5, 2))
        pl = fig.addplot(rect=[0.2, 0.15, 0.7, 0.8])
        self.plot_model_result(pl,
                               para,
                               result_list3D_full,
                               experiment3D_full,
                               plot_data=True)
    def fit_experiment(self):
        global Nfeval
        experiment3B = 'NevianFig3B'
        with open(self.datapath+'resultlist_'+experiment3B,'rb') as f:
            result_list3B = pickle.load(f)
        experiment3D = 'NevianFig3D'
        with open(self.datapath+'resultlist_'+experiment3D,'rb') as f:
            result_list3D = pickle.load(f)
        experiment3D_full = 'NevianFig3D_full'
        with open(self.datapath+'resultlist_'+experiment3D_full,'rb') as f:
            result_list3D_full = pickle.load(f)
        experiment2 = 'NevianFig2'
        with open(self.datapath+'resultlist_'+experiment2,'rb') as f:
            result_list2 = pickle.load(f)
        experiment2_full = 'NevianFig2_full'
        with open(self.datapath+'resultlist_'+experiment2_full,'rb') as f:
            result_list2_full = pickle.load(f)


        x0 = list()
        bnds = list()
        # The following is the most up-to-date parameters fitting Nevian Fig.2

        x0.append(0.371)    # NMDA scaling parameter
        bnds.append([0.3,3])
        x0.append(0.957)    # bAP scaling
        bnds.append([0.4,1])
        x0.append(39.949)      # induced depression strength
        bnds.append([20,500])
        x0.append(177.552)  # induced potentiation strength
        bnds.append([50,500])
        #x0.append(346.833)      # synaptic learning time constant (s)
        #bnds.append([50,700])
        x0.append(2.78)      # potentiation threshold (this parameter is very important)
        bnds.append([1.2,3])
        #x0.append(20)
        #bnds.append([12,100]) # Ca time constant (ms)
        #x0.append(0.647)
        #bnds.append([0.35,70]) # noise constant sigma

        start = time.clock()
        # Fit the model to some of the data but not all
        obj_func = lambda para: \
        0*self.get_model_sqe(para, result_list3B, experiment3B) + \
        1*self.get_model_sqe(para, result_list3D, experiment3D) + \
        1*self.get_model_sqe(para, result_list2, experiment2)
        Nfeval = 1
        def callbackF(Xi):
            global Nfeval
            if Nfeval == 1:
                print 'N  f     NMDA   bAP   wpre    w1   gP      tau      tau_Ca'
            print('%2d %0.3f ' % (Nfeval,obj_func(Xi))+' '.join('{:0.3f}'.format(k) for k in Xi))

            Nfeval += 1
        res = scipy.optimize.minimize(obj_func,x0,bounds=bnds,method='SLSQP',
                                      options={'maxiter':300, 'disp':True},callback=callbackF)
        x = res.x
        print('%2d %0.3f ' % (Nfeval,obj_func(x))+' '.join('{:0.3f}'.format(k) for k in x))


        end = time.clock()
        print 'time spent %0.6f' % (end-start)


        sqe, change_list, wpost_list, para = self.get_model_sqe(x, result_list2, rich_return=True)

        fig=MyFigure(figsize=(2,2))
        pl = fig.addplot(rect=[0.2,0.15,0.7,0.8])
        self.plot_model_result(pl, para, result_list2_full, experiment2_full, plot_data=True)
        self.compareWithNevian_CaTrace(para,remakeFig = False,experiment = 'NevianFig5')

        fig=MyFigure(figsize=(1.5,2))
        pl = fig.addplot(rect=[0.2,0.15,0.7,0.8])
        self.plot_model_result(pl, para, result_list3B, experiment3B, plot_data=True)
        #compareWithNevian_CaTrace(para,remakeFig = False,experiment = experiment3B)


        fig=MyFigure(figsize=(1.5,2))
        pl = fig.addplot(rect=[0.2,0.15,0.7,0.8])
        self.plot_model_result(pl, para, result_list3D_full, experiment3D_full, plot_data=True)
Ejemplo n.º 34
0
    def quick_runNewsome_psychometric(self, p, savenew=True, savename=''):
        datacolor3 = np.array([150, 150, 150]) / 255
        modelcolor3 = np.array([37, 37, 37]) / 255

        m_options = np.array([-0.5, -0.15, -0.05, 0.05, 0.15, 0.5])
        c_options = np.array([-0.5, -0.18, -0.06, 0.06, 0.18, 0.5])
        n_options = 6
        mks = 5

        n_plot = 51
        coh_plot = np.linspace(-0.6, 0.6, n_plot)
        performance_plot_m = np.zeros((n_options, n_plot))
        for i_c in xrange(n_options):
            for i_m in xrange(n_plot):
                c = c_options[i_c]
                m = coh_plot[i_m]
                performance = self.quick_Newsome_model(p, m, c)
                performance_plot_m[i_c, i_m] += performance * 100

        fig = MyFigure(figsize=(4.5, 1.7))
        pl = fig.addplot(rect=[0.1, 0.3, 0.24, 0.6])
        pl.plot(m_options * 100,
                self.p_m_m * 100,
                'o',
                color=datacolor3,
                markeredgecolor=datacolor3,
                label='Data',
                markersize=mks)
        pl.plot(coh_plot * 100,
                performance_plot_m.mean(axis=0),
                color=modelcolor3,
                label='Model')
        pylab.ylim([-5, 105])
        pylab.yticks([0, 25, 50, 75, 100])
        pylab.xticks([-50, -15, 15, 50],
                     ['-50\n Left', '-15', '15', '50\n Right'])
        pylab.ylabel('Choices to right (%)')
        pylab.xlabel('Motion coherence')
        leg = pylab.legend(loc=2, numpoints=1, bbox_to_anchor=(-0.03, 1.15))
        leg.draw_frame(False)

        m_options = c_options[:]
        performance_plot_c = np.zeros((n_options, n_plot))
        for i_m in xrange(n_options):
            for i_c in xrange(n_plot):
                c = coh_plot[i_c]
                m = m_options[i_m]
                performance = self.quick_Newsome_model(p, m, c)
                performance_plot_c[i_m, i_c] += performance * 100

        pl = fig.addplot(rect=[0.44, 0.3, 0.24, 0.6])
        pl.plot(c_options * 100,
                self.p_m_c * 100,
                'o',
                color=datacolor3,
                markeredgecolor=datacolor3,
                label='Data',
                markersize=mks)
        pl.plot(coh_plot * 100,
                performance_plot_c.mean(axis=0),
                color=modelcolor3,
                label='Model')
        pylab.ylim([-5, 105])
        pylab.yticks([0, 25, 50, 75, 100], [])
        pylab.xticks([-50, -15, 15, 50],
                     ['-50\n Red', '-15', '15', '50\n Green'])
        pylab.xlabel('Color coherence')
        pylab.ylabel('Choices to green (%)')
        #title('Motion Context')
        leg = pylab.legend(loc=2, numpoints=1, bbox_to_anchor=(-0.03, 1.15))
        leg.draw_frame(False)

        pl = fig.addplot(rect=[0.73, 0.3, 0.24, 0.6])
        for i_m in xrange(n_options // 2):
            pl.plot(coh_plot * 100,
                    (performance_plot_c[i_m, :] +
                     performance_plot_c[-1 - i_m, :]) / 2,
                    color=motion_colors4[-i_m - 1])
        pylab.ylim([-5, 105])
        pylab.yticks([0, 25, 50, 75, 100], [])
        pylab.xticks([-50, -15, 15, 50],
                     ['-50\n Red', '-15', '15', '50\n Green'])
        leg = pylab.legend(['Strong', 'Medium', 'Weak'],
                           title='Motion coherence',
                           loc=2,
                           bbox_to_anchor=(-0.1, 1.2))
        leg.draw_frame(False)
        pylab.xlabel('Color coherence')

        if savenew:
            fig.save(self.figpath + 'CompareWithNewsomePsychometric_' +
                     savename + self.monkey + self.version)

        combined_panel = True
        if combined_panel:
            mks = 3
            fig = MyFigure(figsize=(1.85, 1.5))
            pl = fig.addplot(rect=[0.3, 0.25, 0.6, 0.55])
            pl.plot(c_options * 100,
                    self.p_m_c * 100,
                    'o',
                    color=np.array([8, 29, 88]) / 255,
                    markeredgecolor=np.array([8, 29, 88]) / 255,
                    markersize=mks,
                    label='Data - Color context')
            pl.plot(coh_plot * 100,
                    performance_plot_c.mean(axis=0),
                    color=np.array([8, 29, 88]) / 255)
            pl.plot(m_options * 100,
                    self.p_m_m * 100,
                    'o',
                    color=np.array([65, 182, 196]) / 255,
                    markeredgecolor=np.array([65, 182, 196]) / 255,
                    label='Data - Motion context',
                    markersize=mks)
            pl.plot(coh_plot * 100,
                    performance_plot_m.mean(axis=0),
                    color=np.array([65, 182, 196]) / 255,
                    label='Model')
            pylab.ylim([-5, 105])
            pylab.yticks([0, 25, 50, 75, 100])
            pylab.xticks([-50, -15, 15, 50], ['-50', '-15', '15', '50'])
            pylab.ylabel('Choices to right (%)')
            pylab.xlabel('Motion coherence to right')
            leg = pylab.legend(loc=2,
                               numpoints=1,
                               bbox_to_anchor=(-0.03, 1.35))
            leg.draw_frame(False)
            fig.save(self.figpath +
                     'CompareWithNewsomePsychometric_combpanel_' + savename +
                     self.monkey + self.version)
    def plot_voltagedistribution(self, denseinh=False):
        '''
        Plot voltage distribution
        '''
        p = dict()
        p['num_DendEach'] = 1
        p['dt'] = 0.2 * ms
        p['num_Soma'] = 40
        p['pre_rate'] = 40 * Hz
        p['inh_base'] = 5 * Hz

        if denseinh:
            p['gGABA'] = p['gGABA'] / 10
            p['inh_base'] = p['inh_base'] * 10
            self.version = 'denseinh_' + self.version

        pre_rates = ones(p['num_Soma']) * p['pre_rate']

        model = MCM.Model(paramsfile=self.paramsfile,
                          eqsfile=self.eqsfile,
                          outsidePara=p)
        model.make_model_dendrite_only(num_soma=p['num_Soma'],
                                       clamped_somavolt=-60 * mV,
                                       condition='invivo')
        model.make_dend_bkginh(inh_rates=p['inh_base'])
        model.single_pathway_gating_experiment(pre_rates,
                                               num_input=15,
                                               w_input=1)
        model.make_network()
        model.reinit()
        net = Network(model)
        net.run(2.5 * second, report='text')

        mon = model.monitor

        times = mon['MvDend'].times / ms
        plotstart = 500
        dendv = mon['MvDend'].values[:, times > plotstart] / mV
        dendv = dendv[range(0, p['num_DendEach'] *
                            p['num_Soma'], p['num_DendEach']), :]

        res = dict()
        res['params'] = p
        res['dendv'] = dendv

        with open(self.datapath + 'voltage_distribution_' + self.version,
                  'wb') as f:
            pickle.dump(res, f)

        fig = MyFigure(figsize=(1.5, 1.5))
        pl = fig.addplot(rect=[0.05, 0.3, 0.9, 0.65])
        #pl.ax.set_frame_on(False)
        pl.ax.spines['left'].set_visible(False)
        pl.ax.get_yaxis().set_visible(False)
        n, bins, patches = hist(dendv.flatten(),
                                50,
                                normed=1,
                                histtype='stepfilled')
        color_hist = array([99, 99, 99]) / 255
        setp(patches, 'facecolor', color_hist, 'edgecolor', color_hist)
        xlim([-70, -10])
        xticks([-60, -50, -40, -30, -20], ['-60', '', '-40', '', '-20'])
        xlabel('$V_D$ (mV)')
        fig.save(self.figpath + 'VoltageDistribution_' + self.version)
Ejemplo n.º 36
0
    def plot_compare(self, p, savenew=True, savename=''):
        cohs = [0.05, 0.15, 0.5]
        x_plot = [-coh for coh in cohs[::-1]] + cohs
        x_plot = np.array(x_plot)

        p_frac1 = p.copy()
        p_frac1['frac_proj'] = 1
        r_mc_list = np.zeros((6, 6))
        for i_m in xrange(len(x_plot)):
            for i_c in xrange(len(x_plot)):
                m = x_plot[i_m]
                c = x_plot[i_c]
                #for a particular value of motion and color m,c \in (-1,1)
                #the input from the two pathways to the four considered populations are
                #(m,c)
                #(-m,c)
                #(m,-c)
                #(-m,-c)
                r_mc_list[i_m,
                          i_c] = self.analytic_twopath(p_frac1, 40 * (1 + m),
                                                       40 * (1 + c))

        input_plot_all = r_mc_list - r_mc_list[::-1, ::-1]
        win1_list = self.perform_func(input_plot_all)

        n_c = n_m = 6

        Dim_motion = r_mc_list + r_mc_list[:, ::
                                           -1] - r_mc_list[::
                                                           -1, :] - r_mc_list[::
                                                                              -1, ::
                                                                              -1]
        Dim_color = r_mc_list - r_mc_list[:, ::
                                          -1] + r_mc_list[::
                                                          -1, :] - r_mc_list[::
                                                                             -1, ::
                                                                             -1]

        smalllinewidth = 1
        largelinewidth = 2.5

        Dim_motion = Dim_motion.mean(axis=1)

        fig = MyFigure(figsize=(4, 4))
        pl = fig.addplot(rect=[0.2, 0.2, 0.7, 0.7])
        for i_motion in xrange(n_m):
            if i_motion < (n_m / 2):
                facecolor = 'white'
                linewidth = smalllinewidth
                linecolor = motion_colors[i_motion]
                px = 1
            else:
                linecolor = motion_colors[n_m - i_motion - 1]
                facecolor = motion_colors[n_m - i_motion - 1]
                linewidth = largelinewidth
                px = -1
            pl.plot(px,
                    Dim_motion[i_motion],
                    'o',
                    markeredgecolor=linecolor,
                    markerfacecolor=facecolor,
                    linewidth=linewidth)

        Dim_color1 = Dim_color[:3, :].mean(axis=0)
        Dim_color2 = Dim_color[3:, :].mean(axis=0)

        print Dim_motion
        print Dim_color1

        for i_color in xrange(n_c):
            if i_color < (n_c / 2):
                linecolor = color_colors[i_color]
                markerfacecolor = 'white'
            else:
                linecolor = color_colors[n_c - i_color - 1]
                markerfacecolor = linecolor
            pl.plot(0.5,
                    Dim_color1[i_color],
                    'o',
                    markeredgecolor=linecolor,
                    markerfacecolor=markerfacecolor,
                    linewidth=smalllinewidth)
            pl.plot(-0.5,
                    Dim_color2[i_color],
                    'o',
                    markeredgecolor=linecolor,
                    markerfacecolor=markerfacecolor,
                    linewidth=largelinewidth)
        pylab.xlabel('Dim Dec')
        pylab.ylabel('Dim Motion/Color')

        self.quick_runNewsome_psychometric(p,
                                           savenew=savenew,
                                           savename=savename)
Ejemplo n.º 37
0
    def plot_state_space(self,p,savenew=True):
        '''
        Plot the state-space plot for fitted model
        '''
        n_list = 6
        record_list = [np.array([])]*n_list
        name_list = ['r1','r2','input_mc','input_none','input_m','input_c']

        for i_m in xrange(len(self.m_plot)):
            for i_c in xrange(len(self.c_plot)):
                m = self.m_plot[i_m]
                c = self.c_plot[i_c]
                result = self.run_Newsome_model(p,m,c, biphasic_input=False)
                for i_list in xrange(n_list):
                    record_list[i_list] = np.concatenate((record_list[i_list],result[name_list[i_list]]))
                print 'm = %0.2f, c = %0.2f' % (m,c)

        # z-score results
        zscore_list = list()
        for i_list in xrange(n_list):
            zscore = record_list[i_list]
            temp = zscore[zscore>0.01] # exclude the data before and after dots
            #zscore -= np.mean(record_list[i_list])
            zscore = zscore/np.std(temp)
            zscore_list.append(zscore)
        zs = zscore_list

        Dim_dec = -(zs[0]-zs[1])/2
        Dim_motion = (zs[2]-zs[3]+zs[4]-zs[5])/4
        Dim_color = (zs[2]-zs[3]-zs[4]+zs[5])/4

        N_t = len(result['r1'])

        maxr = max([max(abs(Dim_dec)),max(abs(Dim_motion)),max(abs(Dim_color))])
        smalllinewidth = 0.5
        largelinewidth = 1
        mks = 2

        n_m = 6
        n_c = 6
        px = [0]*n_m
        py = [0]*n_m
        for i_cond in xrange(n_m*n_c):
            i_motion = i_cond//n_m
            px[i_motion] += Dim_dec[i_cond*N_t:(i_cond+1)*N_t]/n_c
            py[i_motion] += Dim_motion[i_cond*N_t:(i_cond+1)*N_t]/n_c

        dotoffcolor = np.array([84,39,143])/255.
        fig=MyFigure(figsize=(3,1.5))
        pl = fig.addplot(rect=[0.01,0.05,0.45,0.9])
        for i_motion in xrange(n_m):
            if i_motion<(n_m/2):
                mfc = 'white'
                linewidth = smalllinewidth
                linecolor = motion_colors[i_motion]
                mec = linecolor
            else:
                linecolor = motion_colors[n_m-i_motion-1]
                mfc = motion_colors[n_m-i_motion-1]
                linewidth = largelinewidth
                mec = mfc
            pl.plot([px[i_motion][-1]]*2,[py[i_motion][-1],0],
            'o-',color=dotoffcolor,
            markerfacecolor=dotoffcolor,markeredgecolor=dotoffcolor,linewidth=linewidth,markersize=mks)

            pl.plot(px[i_motion],py[i_motion],
            'o-',color=linecolor,
            markerfacecolor=mfc,markeredgecolor=mec,linewidth=linewidth,markersize=mks)

        #xlabel('Dim Dec')
        #ylabel('Dim Motion')
        pylab.xlim((-maxr,maxr))
        pylab.ylim((-maxr,maxr))
        pylab.axis('equal')
        pl.ax.set_frame_on(False)
        pl.ax.set_yticks([])
        pl.ax.set_xticks([])

        px_1 = [0]*n_c
        py_1 = [0]*n_c
        px_2 = [0]*n_c
        py_2 = [0]*n_c
        for i_cond in xrange(n_m*n_c):
            i_color = np.mod(i_cond,n_c)
            i_motion = i_cond//n_m
            if i_motion<(n_m/2):
                px_1[i_color] += Dim_dec[i_cond*N_t:(i_cond+1)*N_t]/n_c*2
                py_1[i_color] += Dim_color[i_cond*N_t:(i_cond+1)*N_t]/n_c*2
            else:
                px_2[i_color] += Dim_dec[i_cond*N_t:(i_cond+1)*N_t]/n_c*2
                py_2[i_color] += Dim_color[i_cond*N_t:(i_cond+1)*N_t]/n_c*2

        pl = fig.addplot(rect=[0.54,0.05,0.45,0.9])
        for i_color in xrange(n_c):
            if i_color<(n_c/2):
                linecolor = color_colors[i_color]
                mfc = 'white'
                mec = linecolor
            else:
                linecolor = color_colors[n_c-i_color-1]
                mfc = linecolor
                mec = mfc
            pl.plot([px_1[i_color][-1]]*2,[py_1[i_color][-1],0],'o-',
                    color=dotoffcolor,markerfacecolor=dotoffcolor,markeredgecolor=dotoffcolor,linewidth=smalllinewidth,markersize=mks)
            pl.plot([px_2[i_color][-1]]*2,[py_2[i_color][-1],0],'o-',
                    color=dotoffcolor,markerfacecolor=dotoffcolor,markeredgecolor=dotoffcolor,linewidth=largelinewidth,markersize=mks)


            pl.plot(px_1[i_color],py_1[i_color],'o-',
                    color=linecolor,markerfacecolor=mfc,markeredgecolor=mec,linewidth=smalllinewidth,markersize=mks)
            pl.plot(px_2[i_color],py_2[i_color],'o-',
                    color=linecolor,markerfacecolor=mfc,markeredgecolor=mec,linewidth=largelinewidth,markersize=mks)
        #xlabel('Dim Dec')
        #ylabel('Dim Color')
        pylab.xlim((-maxr,maxr))
        pylab.ylim((-maxr,maxr))
        pl.ax.set_frame_on(False)
        pl.ax.set_yticks([])
        pl.ax.set_xticks([])
        if savenew:
            fig.save(self.figpath+'plot_Newsome_statespace'+'_'+self.monkey+self.version)
Ejemplo n.º 38
0
    def fit_DendVvsgErI(self):
        '''
        fit the dendritic voltage as a function of excitatory input and inhibitory rate
        '''
        with open(self.datapath + 'DendVvsgErI' + self.version, 'rb') as f:
            result = pickle.load(f)

        x0 = [5, 10, 7, 1]
        bnds = ((1, 20), (1, 20), (1, 20), (0, 3))

        params = copy.copy(self.params)
        for key in result['params']:
            params[key] = result['params'][key]  # overwrite the old value

        temp = params['pre_rate'] * params['tauNMDARise'] * params[
            'tauNMDADecay'] * params['alphaNMDA']
        print params['tauNMDARise'] * params['tauNMDADecay'] * params[
            'alphaNMDA']
        # 0.06 is obtained from tau_rise = 2ms, tau_decay=100ms, alpha=0.3 /ms
        s_mean = temp / (1 + temp)  # mean gating variable
        result['Exc'] = result['weights'] * params['gNMDA'] * 1e9 * params[
            'num_input'] * s_mean
        # unit-less weights * synaptic conductance 2.5nS * 15 synapses * mean gating variable for 30Hz

        result['Inh'] = result['dend_inh_rates'] * params['tauGABA'] * params[
            'gGABA'] * 1e9
        # Total Rate * synaptic conductance * tau_GABA

        res = scipy.optimize.minimize(
            lambda p: self.obj_func_DendVvsgErI(p, result),
            x0,
            bounds=bnds,
            method='SLSQP',
            options={
                'maxiter': 100,
                'disp': True
            })
        print res.x
        p = res.x

        xdata = result['Exc']
        n_curve = len(result['vdend_mean_list'])

        fig = MyFigure(figsize=(2, 1.5))
        pl = fig.addplot(rect=[0.25, 0.25, 0.7, 0.7])

        for i in xrange(n_curve):
            ydata = result['vdend_mean_list'][i] * 1000
            ax_data, = pl.plot(xdata,
                               ydata,
                               color=np.array([55, 126, 184]) / 255)

        ymodel_list, sqe = self.obj_func_DendVvsgErI(p,
                                                     result,
                                                     rich_return=True)
        for i in xrange(n_curve):
            ax_model, = pl.plot(xdata, ymodel_list[i], color='black')

        pl.xlabel(r'$g_{E,\mathrm{tot}}$ (nS)', labelpad=3)
        pl.ylabel(r'$\overline{V}_D$ (mV)')
        pl.ax.set_xlim((0, 50))
        pl.ax.set_xticks([0, 25, 50])
        pl.ax.set_ylim((-70, -10))
        pl.ax.set_yticks([-70, -20])
        leg = pl.legend([ax_data, ax_model], ['Simulation', 'Fit'],
                        loc=2,
                        bbox_to_anchor=[0, 1.05])
        leg.draw_frame(False)

        fig.save(self.figpath + 'DendVvsgErI' + self.version)
Ejemplo n.º 39
0
    def plot_state_space(self, p, savenew=True):
        '''
        Plot the state-space plot for fitted model
        '''
        n_list = 6
        record_list = [np.array([])] * n_list
        name_list = [
            'r1', 'r2', 'input_mc', 'input_none', 'input_m', 'input_c'
        ]

        for i_m in xrange(len(self.m_plot)):
            for i_c in xrange(len(self.c_plot)):
                m = self.m_plot[i_m]
                c = self.c_plot[i_c]
                result = self.run_Newsome_model(p, m, c, biphasic_input=False)
                for i_list in xrange(n_list):
                    record_list[i_list] = np.concatenate(
                        (record_list[i_list], result[name_list[i_list]]))
                print 'm = %0.2f, c = %0.2f' % (m, c)

        # z-score results
        zscore_list = list()
        for i_list in xrange(n_list):
            zscore = record_list[i_list]
            temp = zscore[zscore >
                          0.01]  # exclude the data before and after dots
            #zscore -= np.mean(record_list[i_list])
            zscore = zscore / np.std(temp)
            zscore_list.append(zscore)
        zs = zscore_list

        Dim_dec = -(zs[0] - zs[1]) / 2
        Dim_motion = (zs[2] - zs[3] + zs[4] - zs[5]) / 4
        Dim_color = (zs[2] - zs[3] - zs[4] + zs[5]) / 4

        N_t = len(result['r1'])

        maxr = max(
            [max(abs(Dim_dec)),
             max(abs(Dim_motion)),
             max(abs(Dim_color))])
        smalllinewidth = 0.5
        largelinewidth = 1
        mks = 2

        n_m = 6
        n_c = 6
        px = [0] * n_m
        py = [0] * n_m
        for i_cond in xrange(n_m * n_c):
            i_motion = i_cond // n_m
            px[i_motion] += Dim_dec[i_cond * N_t:(i_cond + 1) * N_t] / n_c
            py[i_motion] += Dim_motion[i_cond * N_t:(i_cond + 1) * N_t] / n_c

        dotoffcolor = np.array([84, 39, 143]) / 255.
        fig = MyFigure(figsize=(3, 1.5))
        pl = fig.addplot(rect=[0.01, 0.05, 0.45, 0.9])
        for i_motion in xrange(n_m):
            if i_motion < (n_m / 2):
                mfc = 'white'
                linewidth = smalllinewidth
                linecolor = motion_colors[i_motion]
                mec = linecolor
            else:
                linecolor = motion_colors[n_m - i_motion - 1]
                mfc = motion_colors[n_m - i_motion - 1]
                linewidth = largelinewidth
                mec = mfc
            pl.plot([px[i_motion][-1]] * 2, [py[i_motion][-1], 0],
                    'o-',
                    color=dotoffcolor,
                    markerfacecolor=dotoffcolor,
                    markeredgecolor=dotoffcolor,
                    linewidth=linewidth,
                    markersize=mks)

            pl.plot(px[i_motion],
                    py[i_motion],
                    'o-',
                    color=linecolor,
                    markerfacecolor=mfc,
                    markeredgecolor=mec,
                    linewidth=linewidth,
                    markersize=mks)

        #xlabel('Dim Dec')
        #ylabel('Dim Motion')
        pylab.xlim((-maxr, maxr))
        pylab.ylim((-maxr, maxr))
        pylab.axis('equal')
        pl.ax.set_frame_on(False)
        pl.ax.set_yticks([])
        pl.ax.set_xticks([])

        px_1 = [0] * n_c
        py_1 = [0] * n_c
        px_2 = [0] * n_c
        py_2 = [0] * n_c
        for i_cond in xrange(n_m * n_c):
            i_color = np.mod(i_cond, n_c)
            i_motion = i_cond // n_m
            if i_motion < (n_m / 2):
                px_1[i_color] += Dim_dec[i_cond * N_t:(i_cond + 1) *
                                         N_t] / n_c * 2
                py_1[i_color] += Dim_color[i_cond * N_t:(i_cond + 1) *
                                           N_t] / n_c * 2
            else:
                px_2[i_color] += Dim_dec[i_cond * N_t:(i_cond + 1) *
                                         N_t] / n_c * 2
                py_2[i_color] += Dim_color[i_cond * N_t:(i_cond + 1) *
                                           N_t] / n_c * 2

        pl = fig.addplot(rect=[0.54, 0.05, 0.45, 0.9])
        for i_color in xrange(n_c):
            if i_color < (n_c / 2):
                linecolor = color_colors[i_color]
                mfc = 'white'
                mec = linecolor
            else:
                linecolor = color_colors[n_c - i_color - 1]
                mfc = linecolor
                mec = mfc
            pl.plot([px_1[i_color][-1]] * 2, [py_1[i_color][-1], 0],
                    'o-',
                    color=dotoffcolor,
                    markerfacecolor=dotoffcolor,
                    markeredgecolor=dotoffcolor,
                    linewidth=smalllinewidth,
                    markersize=mks)
            pl.plot([px_2[i_color][-1]] * 2, [py_2[i_color][-1], 0],
                    'o-',
                    color=dotoffcolor,
                    markerfacecolor=dotoffcolor,
                    markeredgecolor=dotoffcolor,
                    linewidth=largelinewidth,
                    markersize=mks)

            pl.plot(px_1[i_color],
                    py_1[i_color],
                    'o-',
                    color=linecolor,
                    markerfacecolor=mfc,
                    markeredgecolor=mec,
                    linewidth=smalllinewidth,
                    markersize=mks)
            pl.plot(px_2[i_color],
                    py_2[i_color],
                    'o-',
                    color=linecolor,
                    markerfacecolor=mfc,
                    markeredgecolor=mec,
                    linewidth=largelinewidth,
                    markersize=mks)
        #xlabel('Dim Dec')
        #ylabel('Dim Color')
        pylab.xlim((-maxr, maxr))
        pylab.ylim((-maxr, maxr))
        pl.ax.set_frame_on(False)
        pl.ax.set_yticks([])
        pl.ax.set_xticks([])
        if savenew:
            fig.save(self.figpath + 'plot_Newsome_statespace' + '_' +
                     self.monkey + self.version)
    def plot_WeightChangevsrE(self):
        '''
        Plot weight change when varying excitatory input rate
        '''
        with open(self.datapath+'resultlist_varyrate_postr10','rb') as f:
            result_list = pickle.load(f)

        with open(self.datapath+'learning_para_2014-11-10_0','rb') as f:
            para = pickle.load(f)
        q = para.copy()
        # in vivo change (see Higgins, Graupner, Brunel 2014)
        #q['NMDA_scaling'] = q['NMDA_scaling']*1.5/2
        #q['bAP_scaling'] = q['bAP_scaling']/5

        vDend_mean_list = list()
        w_post_list = list()
        AlphaP_list = list()
        AlphaD_list = list()
        for result in result_list:
            p = result['params']
            vDend = result['vDend']
            NMDACasyn = result['NMDACasyn']
            bAPCa = result['bAPCa']

            vDend_mean = vDend.mean(axis=1)
            vDend_mean_list.append(vDend_mean)


            num_syn = NMDACasyn.shape[0]
            num_soma = bAPCa.shape[0]
            synsomaratio = num_syn//num_soma

            bAPCasyn = bAPCa.repeat(synsomaratio,axis=0)
            CaTrace = NMDACasyn*q['NMDA_scaling'] + bAPCasyn*q['bAP_scaling']

            w_post = zeros(num_syn)
            AlphaP_plot = zeros(num_syn)
            AlphaD_plot = zeros(num_syn)

            n_eachrate = num_syn//p['n_rate']
            repeat_times = 5
            record_dt = p['record_dt']
            for i_syn in xrange(num_syn):
                CaTraceSorted = sort(CaTrace[i_syn])

                AlphaP = MCM.crossthresholdtime(CaTraceSorted,q['thetaP'])*record_dt*repeat_times
                AlphaD = MCM.crossthresholdtime(CaTraceSorted,q['thetaD'])*record_dt*repeat_times

                wpre = 1
                wpost_syn = MCM.SynapseChange(wpre,AlphaP,AlphaD,q)
                w_post[i_syn] = wpost_syn
                AlphaP_plot[i_syn] = AlphaP
                AlphaD_plot[i_syn] = AlphaD

            w_post = w_post.reshape(p['n_rate'],n_eachrate)
            w_post = w_post.mean(axis=1)
            w_post_list.append(w_post)
            AlphaP_list.append(AlphaP_plot)
            AlphaD_list.append(AlphaD_plot)

        dend_inh_rates = p['dend_inh_rates']


        colorMatrix = array([[65,182,196],
                            [34,94,168],
                            [8,29,88]])/255

        fig=MyFigure(figsize=(2.5,2.5))
        pl = fig.addplot(rect=[0.2,0.25,0.7,0.7])
        plotlist = list()
        i = 0
        for vDend_mean in vDend_mean_list:
            ax, = pl.plot(p['pre_rates'],vDend_mean/mV,color=colorMatrix[i,:])
            plotlist.append(ax)
            xlabel('Pre-synaptic rate (Hz)')
            ylabel('Mean Dendritic Voltage (mV)')
            i += 1
        pl.ax.set_xticks([0,20,40])
        pl.ax.set_ylim((-70,-10))
        pl.ax.set_yticks([-70,-50,-30,-10])
        leg=legend(plotlist,['%d' % r for r in dend_inh_rates],title='Inhibition (Hz)',loc=2)
        leg.draw_frame(False)
        #fig.save('figures/RateVsInhibition'+self.version)



        fig=MyFigure(figsize=(2,2))
        pl = fig.addplot(rect=[0.2,0.2,0.7,0.7])
        pl.plot([0,max(p['pre_rates'])],[1,1],color=array([189,189,189])/255)
        i = 0
        plotlist = list()
        for w_post in w_post_list:
            ax, = pl.plot(p['pre_rates'],w_post,color=colorMatrix[i,:])
            plotlist.append(ax)
            xlabel('Pre-synaptic rate (Hz)')
            ylabel('Weight change')
            i += 1
        pl.ax.set_xticks([0,20,40])
        pl.ax.set_ylim((0,3))
        pl.ax.set_yticks([0,1,2,3])
        leg=legend(plotlist,['%d' % r for r in dend_inh_rates],title='Inhibition (Hz)',loc=2)
        leg.draw_frame(False)
        #title('post rate = %d Hz' % p['post_rate'])
        fig.save(self.figpath+'WeightChangevsrE_postr%d' % p['post_rate']+self.version)
    def plot_EvsDI(self,
                   name='NMDA',
                   denseinh=False,
                   bothinh=True,
                   rate_range=60):
        '''
        plot mean dendritic voltage as a function of excitatory input rate,
        and inhibitory rate
        '''

        if denseinh:
            di = 'denseinh_'
            k = 10
        else:
            di = ''
            k = 1

        name_append = di + name + ('_range%d' % rate_range) + self.version

        with open(
                self.datapath + 'EvsDI_' + di + name +
            ('_range%d' % rate_range) + '_latest.pkl', 'rb') as f:
            res = pickle.load(f)

        if rate_range > 100:
            figsize = (1.5, 1.3)
            ylim = (-70, 0)
            yticks = [-70, -10]
            rect = [0.25, 0.3, 0.65, 0.65]
        else:
            figsize = (1.3, 1.3)
            ylim = (-70, -10)
            yticks = [-70, -20]
            rect = [0.3, 0.3, 0.65, 0.65]

        fig = MyFigure(figsize=figsize)
        pl = fig.addplot(rect=rect)
        pl.plot(res['pre_rates'],
                res['vDend_mean'][0],
                color=colorMatrix[1],
                label='0')
        print res['vDend_mean'][0]
        if bothinh:
            pl.plot(res['pre_rates'],
                    res['vDend_mean'][30],
                    color=colorMatrix[5],
                    label='30')
        #leg=legend(title='Inhibition (Hz)',loc=2, bbox_to_anchor=[-0.05, 1.05],frameon=False)
        pl.ax.set_ylim(ylim)
        pl.ax.set_yticks(yticks)
        xticks = [0, int(rate_range / 2), rate_range]
        pl.ax.set_xticks(xticks)
        #xlabel('Rate of %d ' % p['num_inputeach']+name+' inputs (Hz)' )
        xlabel('Rate (Hz)')
        if name is 'NMDA':
            ylabel('$\overline{V}_D$ (mV)', labelpad=-5)
        else:
            pl.ax.set_yticklabels(['', ''])
        if bothinh:
            fig.save(self.figpath + 'EvsDI_' + name_append)
        else:
            fig.save(self.figpath + 'EvsDI_preinh_' + name_append)

        if name is 'NMDA':
            inh_list = res['vDend_mean'].keys()
            inh_list = sort(inh_list)
            fig = MyFigure(figsize=(2.2, 1.6))
            pl = fig.addplot(rect=[0.25, 0.25, 0.7, 0.7])
            for i in xrange(len(inh_list)):
                color = colorMatrix[i + 1, :]
                pl.plot(res['pre_rates'],
                        res['vDend_mean'][inh_list[i]],
                        color=color,
                        label='%d' % (inh_list[i] * k))

            leg = legend(title='Inhibition (Hz)',
                         loc=2,
                         bbox_to_anchor=[0.02, 1.05],
                         frameon=False)
            pl.ax.set_ylim((-70, -10))
            pl.ax.set_yticks([-70, -20])
            pl.ax.set_xticks(xticks)
            #xlabel('Rate of %d ' % p['num_inputeach']+name+' inputs (Hz)' )
            xlabel('Excitatory input rate (Hz)')
            ylabel('Mean dendritic voltage (mV)', labelpad=5)
            fig.save(self.figpath + 'EvsDI_full_' + name_append)
Ejemplo n.º 42
0
    def plot_compare(self,p,savenew=True,savename=''):
        cohs = [0.05,0.15,0.5]
        x_plot = [-coh for coh in cohs[::-1]]+cohs
        x_plot = np.array(x_plot)

        p_frac1 = p.copy()
        p_frac1['frac_proj'] = 1
        r_mc_list = np.zeros((6,6))
        for i_m in xrange(len(x_plot)):
            for i_c in xrange(len(x_plot)):
                m = x_plot[i_m]
                c = x_plot[i_c]
                #for a particular value of motion and color m,c \in (-1,1)
                #the input from the two pathways to the four considered populations are
                #(m,c)
                #(-m,c)
                #(m,-c)
                #(-m,-c)
                r_mc_list[i_m,i_c] = self.analytic_twopath(p_frac1,40*(1+m),40*(1+c))

        input_plot_all = r_mc_list - r_mc_list[::-1,::-1]
        win1_list = self.perform_func(input_plot_all)

        n_c = n_m = 6

        Dim_motion = r_mc_list + r_mc_list[:,::-1] - r_mc_list[::-1,:] - r_mc_list[::-1,::-1]
        Dim_color = r_mc_list - r_mc_list[:,::-1] + r_mc_list[::-1,:] - r_mc_list[::-1,::-1]

        smalllinewidth = 1
        largelinewidth = 2.5

        Dim_motion = Dim_motion.mean(axis=1)

        fig=MyFigure(figsize=(4,4))
        pl = fig.addplot(rect=[0.2,0.2,0.7,0.7])
        for i_motion in xrange(n_m):
            if i_motion<(n_m/2):
                facecolor = 'white'
                linewidth = smalllinewidth
                linecolor = motion_colors[i_motion]
                px = 1
            else:
                linecolor = motion_colors[n_m-i_motion-1]
                facecolor = motion_colors[n_m-i_motion-1]
                linewidth = largelinewidth
                px = -1
            pl.plot(px,Dim_motion[i_motion],
            'o',markeredgecolor=linecolor,
            markerfacecolor=facecolor,linewidth=linewidth)


        Dim_color1 = Dim_color[:3,:].mean(axis=0)
        Dim_color2 = Dim_color[3:,:].mean(axis=0)

        print Dim_motion
        print Dim_color1

        for i_color in xrange(n_c):
            if i_color<(n_c/2):
                linecolor = color_colors[i_color]
                markerfacecolor = 'white'
            else:
                linecolor = color_colors[n_c-i_color-1]
                markerfacecolor = linecolor
            pl.plot(0.5,Dim_color1[i_color],'o',
                    markeredgecolor=linecolor,markerfacecolor=markerfacecolor,linewidth=smalllinewidth)
            pl.plot(-0.5,Dim_color2[i_color],'o',
                    markeredgecolor=linecolor,markerfacecolor=markerfacecolor,linewidth=largelinewidth)
        pylab.xlabel('Dim Dec')
        pylab.ylabel('Dim Motion/Color')

        self.quick_runNewsome_psychometric(p,savenew=savenew,savename=savename)