def parse(structSignature: str, bindingGrammar: Grammar) -> list: contents = fileHandler.readFile(filename) struct = fileHandler.findStructSignature(structSignature, contents) parsed = bindingGrammar.parse(struct) if parsed.is_valid: parsed_list = TreeParser(parsed) return parsed_list.getBindings() print(parsed.as_str()) return []
def checkForTableID(moduleID): #string = "@PersistenceCapable(detachable = \"true\", table = \"foo_account\")" flag = True task_dict = {} table_dict = {} for f in fileHandler.getAllFilesMatching('*.java'): contents = fileHandler.readFile(f) # Initial work on checking task/config names # try: # method = javaHandler.readMethod(contents, "public String getDisplayLabel()") # print method # except: # False try: method = javaHandler.readMethod(contents, "public TaskConfigIf getTaskConfigImplementation") if (method[0].split()[2] in task_dict.keys()): log.critical("Task config re-used: " + method[0].split()[2] + " in files: " + f + " & " + task_dict[method[0].split()[2]]) flag = False else: task_dict[method[0].split()[2]] = f except: False for line in contents: if(("@PersistenceCapable" in line) and ("table" in line)): inBrackets = gstring.getTargetBetweenBrackets(line) attributes = inBrackets.split(",") tableAttribute = [s for s in attributes if "table" in s] a = re.findall('"([^"]*)"', tableAttribute[0])[0] if (a in table_dict.keys()): log.critical("\tTable already used: " + a + " (files: " + table_dict.get(str(a)) + " & " + f) flag = False else: table_dict[str(a)] = f if(not a.startswith((moduleID + "_"))): log.critical("\tThe table ID in class " + f + " is not prefixed the moduleID and an underscore: " + moduleID + "_") if (flag == False): log.critical("Table checking failed") exit(1) '''
def getClassesListedForEnhancement(): files = fileHandler.getAllFilesMatching("jdo.files") #Go through and get all of the files that are LISTED for enhancement newList = [] for f in files: if("src" in f): newList.append(f) files = newList listOfClasses = [] for f in files: fileContents = fileHandler.readFile(f) classes = getJDOClassesInFile(fileContents) for c in classes: listOfClasses.append(c) return listOfClasses
reminderList['items'] = [] writeFile("reminderlist.txt", reminderList) def reminderQuit(): """ This function has to be called when shutting down. It terminates all waiting threads. """ try: for index, el in timerList.iteritems(): el.cancel() except: for index, el in timerList.items(): el.cancel() timerList = {} reminderList = readFile("reminderlist.txt", {'items': []}) reminderList['items'] = sort(reminderList['items']) reminderList['items'] = [i for i in reminderList['items'] if not i['hidden']] for e in reminderList['items']: e['time'] = str2date(e['time']) waitTime = e['time'] - dt.now() n = Notify.Notification.new(e['name']) n.set_urgency(Notify.Urgency.LOW) timerList[e['uuid']] = Timer(waitTime.total_seconds(), showAlarm, [n, e['name']]) timerList[e['uuid']].start() Notify.init("Jarvis")
from fileHandler import readFile, separator from Regressao_Logistica import constroi_modelo import numpy as np import matplotlib.pyplot as plt matrix = readFile('tic-tac-toe.data') X_treino, Y_treino, X_teste, Y_teste = separator(0.3, matrix) X_treino = np.array(X_treino).T.astype(np.float) Y_treino = np.array([Y_treino]).astype(np.float) X_teste = np.array(X_teste).T.astype(np.float) Y_teste = np.array([Y_teste]).astype(np.float) print(X_treino.shape) print(Y_treino.shape) print(X_teste.shape) print(Y_teste.shape) def raioGraficalizador(dados, intervalo, numeroIteracoes, taxaAprendizado): fig, ax = plt.subplots() x = [None] * dados.__len__() for i in range(dados.__len__()): x[i] = i * intervalo ax.plot(x, dados) plt.scatter(x, dados) # scatter são os quadradinhos na linha titulo = 'Taxa de aprendizado: {0} | Número de iterações: {1}'
def hasAnnotations(filePath): sub = "import javax.jdo.annotations" contents = fileHandler.readFile(filePath) return len([s for s in contents if sub in s]) != 0
# Select the best trigger match from the actions list for key in actions: foundMatch = False for trigger in actions[key]['trigger']: newScore, indexList = scoreSentence(data, trigger, distancePenalty = 0.5, additionalTargetPenalty = 0, wordMatchPenalty = 0.5) if foundMatch and len(indexList) > len(indices): # A match for this action was already found. # But this trigger matches more words. indices = indexList if newScore < score: if not foundMatch: indices = indexList minArgs = actions[key]['minArgs'] foundMatch = True score = newScore action = key if not action: return data = data.split(); for i in sorted(indices, reverse=True): del data[i] if len(data) < minArgs: warning("Not enough arguments for specified command {0}".format(action)) return data = " ".join(data) globals()[action](data) todoList = readFile("todolist.txt", {'items':[]}) todoList['items'] = fixTypes(sort(todoList['items']))