def create_hdf5_container(path_i1, path_o, lf_name):

    px = 48
    py = 48

    nviews = 9

    sx = 16
    sy = 16

    file = h5py.File(path_o + '/' + lf_name + '.hdf5', 'w')

    # read diffuse color
    LF = file_io.read_lightfield(path_i1)
    LF = LF.astype(np.float32)  # / 255.0

    cv_gt = lf_tools.cv(LF)
    lf_tools.save_image(path_o + '/' + lf_name, cv_gt)

    # maybe we need those, probably not.
    param_dict = file_io.read_parameters(path_i1)

    dset_blocks = []
    # block count: write out one individual light field
    cx = np.int32((LF.shape[3] - px) / sx) + 1
    cy = np.int32((LF.shape[2] - py) / sy) + 1

    for i, j in itertools.product(np.arange(0, nviews), np.arange(0, nviews)):
        dset_blocks.append(
            file.create_dataset('views%d%d' % (i, j), (cy, cx, 3, px, py),
                                chunks=(1, 1, 3, px, py),
                                maxshape=(None, None, 3, px, py)))
    # lists indexed in 2D
    dset_blocks = [
        dset_blocks[x:x + nviews] for x in range(0, len(dset_blocks), nviews)
    ]

    sys.stdout.write(lf_name + ': ')

    for bx in np.arange(0, cx):
        sys.stdout.write('.')
        sys.stdout.flush()

        for by in np.arange(0, cy):

            x = bx * sx
            y = by * sx

            # extract data
            for i, j in itertools.product(np.arange(0, nviews),
                                          np.arange(0, nviews)):
                dset_blocks[i][j][bx, by, :, :, :] = np.transpose(
                    np.array(LF[i, j, x:x + px, y:y + py, :]),
                    (-1, 0, 1)).reshape(3, px, py)

    sys.stdout.write(' Done.\n')
def convert_to_hdf5(data_folder, tgt=None):
    if tgt is None:
        tgt = os.path.join(data_folder, "scene.h5")

    scene = dict()
    scene["LF"] = file_io.read_lightfield(data_folder)
    params = file_io.read_parameters(data_folder)

    if params["category"] != "test":
        scene["disp_highres"] = file_io.read_disparity(data_folder, highres=True)
        scene["disp_lowres"] = file_io.read_disparity(data_folder, highres=False)
        scene["depth_highres"] = file_io.read_depth(data_folder, highres=True)
        scene["depth_lowres"] = file_io.read_depth(data_folder, highres=False)

    file_io.write_hdf5(scene, tgt)
Ejemplo n.º 3
0
def visualize_scene(data_folder):
    params = file_io.read_parameters(data_folder)

    if params["category"] == "test":
        print("Test scenes with hidden ground truth are not visualized.")
        return

    light_field = file_io.read_lightfield(data_folder)
    disp_map_highres = file_io.read_disparity(data_folder, highres=True)
    disp_map_lowres = file_io.read_disparity(data_folder, highres=False)
    depth_map_lowres = file_io.read_depth(data_folder, highres=False)

    rows, cols = 1, 4
    cb_shrink = 0.7
    fig = plt.figure(figsize=(20, 4))
    plt.suptitle("%s:%s (%s)" %
                 (params["category"].title(), params["scene"].title(),
                  "x".join(str(i) for i in list(np.shape(light_field)))))

    plt.subplot(rows, cols, 1)
    plt.title("Center View")
    plt.imshow(light_field[4, 4, :, :, :])

    plt.subplot(rows, cols, 2)
    plt.title("Depth Map (%dx%d)" % np.shape(depth_map_lowres))
    cc = plt.imshow(depth_map_lowres, cmap=cm.viridis, interpolation="none")
    plt.colorbar(cc, shrink=cb_shrink)

    plt.subplot(rows, cols, 3)
    plt.title("Disparity Map (%dx%d)" % np.shape(disp_map_lowres))
    cc = plt.imshow(disp_map_lowres, cmap=cm.viridis, interpolation="none")
    plt.colorbar(cc, shrink=cb_shrink)

    plt.subplot(rows, cols, 4)
    plt.title("Disparity Map (%dx%d)" % np.shape(disp_map_highres))
    cc = plt.imshow(disp_map_highres, cmap=cm.viridis, interpolation="none")
    plt.colorbar(cc, shrink=cb_shrink)

    fig_name = os.path.join(data_folder, "scene.png")
    plt.savefig(fig_name, dpi=200, bbox_inches='tight')
    fig.clf()
    plt.close(fig)
Ejemplo n.º 4
0
# data_folders.append('platonic')
# data_folders.append('rosemary')
# data_folders.append('sideboard')
# data_folders.append('table')
# data_folders.append('tomb')
# data_folders.append('town')
# data_folders.append('vinyl')

cv = np.zeros([2, 512, 512, 3])
dispgt = np.zeros([2, 512, 512])
n = 0
for lf_name in data_folders:

    data_folder = os.path.join(data_source, lf_name)

    LF = file_io.read_lightfield(data_folder)
    LF = LF.astype(np.float32)

    disp = file_io.read_disparity(data_folder)
    disp_gt = np.array(disp[0])
    disp_gt = np.flip(disp_gt, 0)
    dispgt[n, :, :] = disp_gt

    cv[n, :, :, :] = lf_tools.cv(LF)
    n = n + 1

stack_h, stack_v = refocus_cross(cv, dispgt, 9)

# for k in range(0,9):
#     plt.figure(k)
#     plt.imshow(stack_h[k, :, :, :])
#                                    maxshape=(nviews, py, px, 3, None))
# dset_HS = np.random.normal(0, 0.1, [py_LR_s4, px_LR_s4, h_dim])
# dset_HS = np.ones([py_LR_s4, px_LR_s4, h_dim])/10

index = 0
idx_folder = 0
for folder in data_folders_all:
    if folder == 'Benchmark':
        data_folders = os.listdir(data_source + folder + '/')
        for lf_name in data_folders:
            data_folder = os.path.join(data_source, lf_name)
            print("now %i / %i" % (idx_folder + 1, len(data_folders)))
            idx_folder = idx_folder + 1

            data_path = data_source + folder + '/' + lf_name
            LF_temp = file_io.read_lightfield(data_path)
            LF_temp = LF_temp.astype(np.float32)

            # write out one individual light field
            # block count
            cx_HR = np.int32((LF_temp.shape[3] - px_LR_s4) / sx_LR_s4) + 1
            cy_HR = np.int32((LF_temp.shape[2] - py_LR_s4) / sy_LR_s4) + 1

            for by in np.arange(0, cy_HR):
                sys.stdout.write('.')
                sys.stdout.flush()

                for bx in np.arange(0, cx_HR):
                    x_LR_s2 = bx * sx_LR_s2
                    y_LR_s2 = by * sx_LR_s2