Ejemplo n.º 1
0
        def run(learning_rate, freeze_interval, num_hidden, reg):
            room_size = 5
            num_rooms = 2
            mdp = mdps.MazeMDP(room_size, num_rooms)
            mdp.compute_states()
            mdp.EXIT_REWARD = 1
            mdp.MOVE_REWARD = -0.01
            discount = 1
            num_actions = len(mdp.get_actions(None))
            batch_size = 100
            print 'building network...'
            network = qnetwork.QNetwork(input_shape=2 * room_size + num_rooms ** 2, batch_size=batch_size, num_hidden_layers=2, num_actions=4, num_hidden=num_hidden, discount=discount, learning_rate=learning_rate, regularization=reg, update_rule='adam', freeze_interval=freeze_interval, rng=None)
            num_epochs = 50
            epoch_length = 2
            test_epoch_length = 0
            max_steps = 4 * (room_size * num_rooms) ** 2 
            epsilon_decay = (num_epochs * epoch_length * max_steps) / 1.5
            print 'building policy...'
            p = policy.EpsilonGreedy(num_actions, 0.5, 0.05, epsilon_decay)
            print 'building memory...'
            rm = replay_memory.ReplayMemory(batch_size, capacity=50000)
            print 'building logger...'
            log = logger.NeuralLogger(agent_name='QNetwork')
            print 'building state adapter...'
            adapter = state_adapters.CoordinatesToRowColRoomAdapter(room_size=room_size, num_rooms=num_rooms)
            # adapter = state_adapters.CoordinatesToRowColAdapter(room_size=room_size, num_rooms=num_rooms)
            # adapter = state_adapters.CoordinatesToFlattenedGridAdapter(room_size=room_size, num_rooms=num_rooms)
            # adapter = state_adapters.IdentityAdapter(room_size=room_size, num_rooms=num_rooms)
            # adapter = state_adapters.CoordinatesToSingleRoomRowColAdapter(room_size=room_size)
            print 'building agent...'
            a = agent.NeuralAgent(network=network, policy=p, replay_memory=rm, log=log, state_adapter=adapter)
            run_tests = False
            e = experiment.Experiment(mdp, a, num_epochs, epoch_length, test_epoch_length, max_steps, run_tests, value_logging=True)
            e.run()

            ak = file_utils.load_key('../access_key.key')
            sk = file_utils.load_key('../secret_key.key')
            bucket = 'hierarchical'
            try:
                aws_util = aws_s3_utility.S3Utility(ak, sk, bucket)
                aws_util.upload_directory(e.agent.logger.log_dir)
            except Exception as e:
                print 'error uploading to s3: {}'.format(e)
Ejemplo n.º 2
0
# radius of the Earth
R = 6378.1 

# radius of images around center of city
IMAGE_RADIUS = 10 

# number of images to download from each city
NUM_IMAGES_PER_CITY = 200

# size of failed-download image
FAILED_DOWNLOAD_IMAGE_SIZE = 3554

# place key in a file in the Geo-Localization directory 
# as the only text in the file on one line
KEY_FILEPATH = "../api_key.key"
API_KEY = file_utils.load_key(KEY_FILEPATH)
GOOGLE_URL = ("http://maps.googleapis.com/maps/api/streetview?sensor=false&"
              "size=256x256&fov=120&key=" + API_KEY)
IMAGES_DIR = '../imgs/'


def download_images_for_city(city, lat, lon):
    print 'downloading images of {}'.format(city)
    num_imgs = 0
    misses = 0
    cur_directory = os.path.join(IMAGES_DIR, city)
    if not os.path.exists(cur_directory):
        os.makedirs(cur_directory)

    while num_imgs < 100:
        
Ejemplo n.º 3
0
# radius of the Earth
R = 6378.1 

# radius of images around center of city
IMAGE_RADIUS = 10 

# number of images to download from each city
NUM_IMAGES_PER_CITY = 200

# size of failed-download image
FAILED_DOWNLOAD_IMAGE_SIZE = 3464

# place key in a file in the Geo-Localization directory 
# as the only text in the file on one line
KEY_FILEPATH = "../api_key.key"
API_KEY = file_utils.load_key(KEY_FILEPATH)
GOOGLE_URL = ("http://maps.googleapis.com/maps/api/streetview?"
              "size=256x256&fov=120&pitch=10&key=" + API_KEY)
IMAGES_DIR = '../data/cities/'


def download_images_for_city(city, lat, lon):
    print('downloading images of {}'.format(city))
    num_imgs = 0
    misses = 0
    cur_directory = os.path.join(IMAGES_DIR, city)
    if not os.path.exists(cur_directory):
        os.makedirs(cur_directory)

    while num_imgs < 100:
        
        def run(learning_rate, freeze_interval, num_hidden, reg, seq_len, eps, nt, update):
            room_size = 5
            num_rooms = 2
            input_shape = 2 * room_size
            print 'building mdp...'
            mdp = mdps.MazeMDP(room_size, num_rooms)
            mdp.compute_states()
            mdp.EXIT_REWARD = 1
            mdp.MOVE_REWARD = -0.01
            network_type = nt
            discount = 1
            sequence_length = seq_len
            num_actions = len(mdp.get_actions(None))
            batch_size = 100
            update_rule = update
            print 'building network...'
            network = recurrent_qnetwork.RecurrentQNetwork(input_shape=input_shape, 
                        sequence_length=sequence_length, batch_size=batch_size, 
                        num_actions=4, num_hidden=num_hidden, discount=discount, 
                        learning_rate=learning_rate, regularization=reg, 
                        update_rule=update_rule, freeze_interval=freeze_interval, 
                        network_type=network_type, rng=None)            

            # take this many steps because (very loosely):
            # let l be the step length
            # let d be the difference in start and end locations
            # let N be the number of steps for the agent to travel a distance d
            # then N ~ (d/l)^2  // assuming this is a random walk
            # with l = 1, this gives d^2 in order to make it N steps away
            # the desired distance here is to walk along both dimensions of the maze
            # which is equal to two times the num_rooms * room_size
            # so squaring that gives a loose approximation to the number of 
            # steps needed (discounting that this is actually a lattice (does it really matter?))
            # (also discounting the walls)
            # see: http://mathworld.wolfram.com/RandomWalk2-Dimensional.html
            max_steps = (2 * room_size * num_rooms) ** 2
            num_epochs = 500
            epoch_length = 1
            test_epoch_length = 0
            epsilon_decay = (num_epochs * epoch_length * max_steps) / 4
            print 'building adapter...'
            adapter = state_adapters.CoordinatesToSingleRoomRowColAdapter(room_size=room_size)
            print 'building policy...'
            p = policy.EpsilonGreedy(num_actions, eps, 0.05, epsilon_decay)
            print 'building replay memory...'
            # want to track at minimum the last 50 episodes
            capacity = max_steps * 50
            rm = replay_memory.SequenceReplayMemory(input_shape=input_shape,
                    sequence_length=sequence_length, batch_size=batch_size, capacity=capacity)
            print 'building logger...'
            log = logger.NeuralLogger(agent_name=network_type)
            print 'building agent...'
            a = agent.RecurrentNeuralAgent(network=network, policy=p, 
                    replay_memory=rm, log=log, state_adapter=adapter)
            run_tests = False
            print 'building experiment...'
            e = experiment.Experiment(mdp, a, num_epochs, epoch_length, 
                test_epoch_length, max_steps, run_tests, value_logging=True)
            print 'running experiment...'
            e.run()
            
            ak = file_utils.load_key('../access_key.key')
            sk = file_utils.load_key('../secret_key.key')
            bucket = 'hierarchical9'
            try:
                aws_util = aws_s3_utility.S3Utility(ak, sk, bucket)
                aws_util.upload_directory(e.agent.logger.log_dir)
            except Exception as e:
                print 'error uploading to s3: {}'.format(e)
Ejemplo n.º 5
0
        def run(learning_rate, freeze_interval, num_hidden, reg, seq_len, eps,
                nt, update):
            room_size = 5
            num_rooms = 2
            input_shape = 2 * room_size
            print 'building mdp...'
            mdp = mdps.MazeMDP(room_size, num_rooms)
            mdp.compute_states()
            mdp.EXIT_REWARD = 1
            mdp.MOVE_REWARD = -0.01
            network_type = nt
            discount = 1
            sequence_length = seq_len
            num_actions = len(mdp.get_actions(None))
            batch_size = 100
            update_rule = update
            print 'building network...'
            network = recurrent_qnetwork.RecurrentQNetwork(
                input_shape=input_shape,
                sequence_length=sequence_length,
                batch_size=batch_size,
                num_actions=4,
                num_hidden=num_hidden,
                discount=discount,
                learning_rate=learning_rate,
                regularization=reg,
                update_rule=update_rule,
                freeze_interval=freeze_interval,
                network_type=network_type,
                rng=None)

            # take this many steps because (very loosely):
            # let l be the step length
            # let d be the difference in start and end locations
            # let N be the number of steps for the agent to travel a distance d
            # then N ~ (d/l)^2  // assuming this is a random walk
            # with l = 1, this gives d^2 in order to make it N steps away
            # the desired distance here is to walk along both dimensions of the maze
            # which is equal to two times the num_rooms * room_size
            # so squaring that gives a loose approximation to the number of
            # steps needed (discounting that this is actually a lattice (does it really matter?))
            # (also discounting the walls)
            # see: http://mathworld.wolfram.com/RandomWalk2-Dimensional.html
            max_steps = (2 * room_size * num_rooms)**2
            num_epochs = 500
            epoch_length = 1
            test_epoch_length = 0
            epsilon_decay = (num_epochs * epoch_length * max_steps) / 4
            print 'building adapter...'
            adapter = state_adapters.CoordinatesToSingleRoomRowColAdapter(
                room_size=room_size)
            print 'building policy...'
            p = policy.EpsilonGreedy(num_actions, eps, 0.05, epsilon_decay)
            print 'building replay memory...'
            # want to track at minimum the last 50 episodes
            capacity = max_steps * 50
            rm = replay_memory.SequenceReplayMemory(
                input_shape=input_shape,
                sequence_length=sequence_length,
                batch_size=batch_size,
                capacity=capacity)
            print 'building logger...'
            log = logger.NeuralLogger(agent_name=network_type)
            print 'building agent...'
            a = agent.RecurrentNeuralAgent(network=network,
                                           policy=p,
                                           replay_memory=rm,
                                           log=log,
                                           state_adapter=adapter)
            run_tests = False
            print 'building experiment...'
            e = experiment.Experiment(mdp,
                                      a,
                                      num_epochs,
                                      epoch_length,
                                      test_epoch_length,
                                      max_steps,
                                      run_tests,
                                      value_logging=True)
            print 'running experiment...'
            e.run()

            ak = file_utils.load_key('../access_key.key')
            sk = file_utils.load_key('../secret_key.key')
            bucket = 'hierarchical9'
            try:
                aws_util = aws_s3_utility.S3Utility(ak, sk, bucket)
                aws_util.upload_directory(e.agent.logger.log_dir)
            except Exception as e:
                print 'error uploading to s3: {}'.format(e)
Ejemplo n.º 6
0
        def run(learning_rate, freeze_interval, num_hidden, reg):
            room_size = 5
            num_rooms = 2
            mdp = mdps.MazeMDP(room_size, num_rooms)
            mdp.compute_states()
            mdp.EXIT_REWARD = 1
            mdp.MOVE_REWARD = -0.01
            discount = 1
            num_actions = len(mdp.get_actions(None))
            batch_size = 100
            print 'building network...'
            network = qnetwork.QNetwork(input_shape=2 * room_size +
                                        num_rooms**2,
                                        batch_size=batch_size,
                                        num_hidden_layers=2,
                                        num_actions=4,
                                        num_hidden=num_hidden,
                                        discount=discount,
                                        learning_rate=learning_rate,
                                        regularization=reg,
                                        update_rule='adam',
                                        freeze_interval=freeze_interval,
                                        rng=None)
            num_epochs = 50
            epoch_length = 2
            test_epoch_length = 0
            max_steps = 4 * (room_size * num_rooms)**2
            epsilon_decay = (num_epochs * epoch_length * max_steps) / 1.5
            print 'building policy...'
            p = policy.EpsilonGreedy(num_actions, 0.5, 0.05, epsilon_decay)
            print 'building memory...'
            rm = replay_memory.ReplayMemory(batch_size, capacity=50000)
            print 'building logger...'
            log = logger.NeuralLogger(agent_name='QNetwork')
            print 'building state adapter...'
            adapter = state_adapters.CoordinatesToRowColRoomAdapter(
                room_size=room_size, num_rooms=num_rooms)
            # adapter = state_adapters.CoordinatesToRowColAdapter(room_size=room_size, num_rooms=num_rooms)
            # adapter = state_adapters.CoordinatesToFlattenedGridAdapter(room_size=room_size, num_rooms=num_rooms)
            # adapter = state_adapters.IdentityAdapter(room_size=room_size, num_rooms=num_rooms)
            # adapter = state_adapters.CoordinatesToSingleRoomRowColAdapter(room_size=room_size)
            print 'building agent...'
            a = agent.NeuralAgent(network=network,
                                  policy=p,
                                  replay_memory=rm,
                                  log=log,
                                  state_adapter=adapter)
            run_tests = False
            e = experiment.Experiment(mdp,
                                      a,
                                      num_epochs,
                                      epoch_length,
                                      test_epoch_length,
                                      max_steps,
                                      run_tests,
                                      value_logging=True)
            e.run()

            ak = file_utils.load_key('../access_key.key')
            sk = file_utils.load_key('../secret_key.key')
            bucket = 'hierarchical'
            try:
                aws_util = aws_s3_utility.S3Utility(ak, sk, bucket)
                aws_util.upload_directory(e.agent.logger.log_dir)
            except Exception as e:
                print 'error uploading to s3: {}'.format(e)