def run(method_generateFaceRS='hog'):
    # 读取原始图片与索引
    ri, index = readRiIndex()

    X = extra_feature(ri)
    X = np.concatenate([index, X], axis=1)

    # 进行HOG特征处理后,划分数据集,并将结果写到目录里
    generateFaceRS(X, method_generateFaceRS)
Ejemplo n.º 2
0
def run(method_generateFaceRS='densenet'):
    ri, index = readRiIndex()

    densenet201 = models.densenet201(pretrained=True)

    densenet201.fc = nn.Linear(2048, 2048)
    torch.nn.init.eye(densenet201.fc.weight)

    for param in densenet201.parameters():
        param.requires_grad = False

    use_gpu = torch.cuda.is_available()

    X = extra_feature(ri, densenet201, use_gpu)

    X = np.concatenate([index, X], axis=1)

    # 进行DenseNet特征处理后,划分数据集,并将结果写到目录里
    generateFaceRS(X, method_generateFaceRS)