def main(): if "-h" in sys.argv: print __doc__ else: filtersNames = sys.argv[1].strip().split() filt = [] for el in filtersNames: filt.append(filters.Filter(filters.produceRules(el))) path = os.path.abspath(sys.argv[2]) outdir = os.path.abspath(sys.argv[3]) ttime = time.time() for filename in my_utils.getAllFiles(path): out = GetFormater('%s%s' % (outdir, filename[len(path):])) print "%s" % (filename), try: xml.sax.parse(open(filename, "r"), Resolver(filt, out)) print " - OK" except xml.sax.SAXParseException: print " - FAILED" print my_utils.str_time(time.time() - ttime) for i, el in enumerate(filt): print "\n", filtersNames[i] for key in [ "phrases", "matches", "empty", "rules", "getRulesTime", "matchTime" ]: print "%s : %s" % (key, el.stat[key])
def edges(): S = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]) / 8. #filter the image horizontally and vertically to get gradient values Oy = filters.Filter(K, S) Ox = filters.Filter(K, S.T) #combine to obtain gradient magnitude at each pixel O = np.sqrt(Oy**2 + Ox**2) #set threshold value thresh = 4 * O.mean() #plot the thresholded image plt.imsave('figures/edges.pdf', np.flipud(O > thresh), origin='lower') plt.clf()
def main(args): logging.basicConfig(level=logging.DEBUG, format="\n%(levelname)s:\t%(message)s") logger = logging.getLogger() logger.debug(pprint.pformat(args)) the_filter = filters.Filter(args['fastq_reads'], args['read_to_taxid'], args['taxon_nodes'], logger) if args['linear']: if not args['output_file']: output_file = args['fastq_reads'] + (".FILTERED.%s.fq" % args['taxon_id']) else: output_file = args['output_file'] filtered_reads = the_filter.filter_reads_linear( args['taxon_id'], paired_end=args['paired_end']) with open(output_file, 'w') as out: out.writelines(filtered_reads) logger.info("Finished linear read filtering.") logger.info("All reads written to %s" % output_file) sys.exit() elif args['clade']: clade.filter(logger) elif args['subtree']: subtree.filter(logger) sys.exit()
def GetSentences(self, quant=False): print("Filtering out SVO and SOV sentences for {}.{}".format(self.lang, self.name)) self.results = {} for corpus, data in self.corpora.items(): print(corpus) # Quant vaikuttaa muun muassa objektitulkinnan tiukkuuteen --> for order in ["SVO", "SOV"]: filt = filters.Filter(data, self.lang) print("TADAA!!: " + order) if order not in self.results: self.results[order] = list() filt.ByOrder(order, quant) if quant: #Tarkempi filtteri kvantitatiivista analyysia varten filt.DirectLinkToVerb() filt.Ohjelmatiedot() print('\t Defining distancies for {} {}...'.format(order, corpus)) if filt.passed: for result in filt.passed: self.results[order].append( result.PrintInfoDict( { 'location':result.TransitiveSentenceDistancies(True,self.lang,result.matchedsentence,order=order), 'corpus': corpus, 'sourcetext': 'not defined' #'sourcetext':cons.GetMetaRow(result, corpus, self.lang) } ) )
def main(): if "-h" in sys.argv: print __doc__ else: global INPUT_DIR, OUTPUT_DIR, FILTERS filtersNames = sys.argv[1].strip().split() for el in filtersNames: FILTERS.append(filters.Filter(filters.produceRules(el))) INPUT_DIR = os.path.abspath(sys.argv[2]) OUTPUT_DIR = os.path.abspath(sys.argv[3]) ttime = time.time() tasks = my_utils.getAllFiles(INPUT_DIR) print("DEBUG. sys.argv is %s" % ' '.join(sys.argv)) print("DEBUG. INPUT_DIR is %s" % INPUT_DIR) print("DEBUG. OUTPUT_DIR is %s" % OUTPUT_DIR) pool = multiprocessing.Pool(JOBS_NUMBER) result = pool.map(process_file, tasks) print my_utils.str_time(time.time() - ttime) # for i, el in enumerate(FILTERS): # print "\n", filtersNames[i] # for key in ["phrases", "matches", "empty", "rules", "getRulesTime", "matchTime"]: # print "%s : %s" % (key, el.stat[key]) # returning errors number return sum(result)
def set_quantum_efficiency(self, quantum_efficiency): if isinstance(quantum_efficiency, filters.Filter): self.quantum_efficiency = quantum_efficiency else: self.quantum_efficiency = filters.Filter( 'quantum_efficiency', *self.filter_set.get_full_wavelength_range(), transmittances=float(quantum_efficiency))
def Test2DConvolution(): m1 = np.random.rand(5, 5) m2 = fltr.Filter("box", 3) result1 = fltr.convolution2D(m1, m2.matrixFilter) # Same size output and zero padding result2 = signal.convolve2d(m1, m2.matrixFilter, mode='same', boundary='fill') print(result1) print(result2) if (result1.all() == result2.all()): print("Convolution test 1 passed !") else: print("Convolution test 1 failed !") m1 = np.random.rand(200, 300) m2 = fltr.Filter("box", 7) result1 = fltr.convolution2D(m1, m2.matrixFilter) # Same size output and zero padding result2 = signal.convolve2d(m1, m2.matrixFilter, mode='same', boundary='fill') print(result1) print(result2) if (result1.all() == result2.all()): print("Convolution test 2 passed !") else: print("Convolution test 2 failed !") m1 = np.random.rand(200, 300) m2 = fltr.Filter("box", 31) result1 = fltr.convolution2D(m1, m2.matrixFilter) # Same size output and zero padding result2 = signal.convolve2d(m1, m2.matrixFilter, mode='same', boundary='fill') print(result1) print(result2) if (result1.all() == result2.all()): print("Convolution test 3 passed !") else: print("Convolution test 3 failed !")
def TestBoxFilter(): img_path = "stop_1.png" fig = plt.figure(figsize=(1, 2)) # Show original image img = plt.imread(img_path) fig.add_subplot(1, 4, 1).title.set_text('Original') plt.axis('off') plt.imshow(img) # Load an image as matrix img = imageio.imread(img_path) # Create filter filtr = fltr.Filter("box", 3) # Filter it img_filtered = filtr.filterRGB(img) fig.add_subplot(1, 4, 2).title.set_text('Box 3x3') plt.axis('off') plt.imshow(img_filtered) # Create filter filtr = fltr.Filter("box", 5) # Filter it img_filtered = filtr.filterRGB(img) fig.add_subplot(1, 4, 3).title.set_text('Box 5x5') plt.axis('off') plt.imshow(img_filtered) # Create filterRGB filtr = fltr.Filter("box", 31) # Filter it img_filtered = filtr.filterRGB(img) fig.add_subplot(1, 4, 4).title.set_text('Box 31x31') plt.axis('off') plt.imshow(img_filtered) # Show results plt.show()
def TestGaussianFilter(): img_path = "stop_1.png" fig = plt.figure(figsize=(1, 2)) # Show original image img = plt.imread(img_path) fig.add_subplot(1, 4, 1).title.set_text('Original') plt.axis('off') plt.imshow(img) # Load an image as matrix img = imageio.imread(img_path) # Create filter filtr = fltr.Filter("gaussian", 3, 1) # Filter it img_filtered = filtr.filterRGB(img) fig.add_subplot(1, 4, 2).title.set_text('Gaussian 3x3 sig=1') plt.axis('off') plt.imshow(img_filtered) # Create filter filtr = fltr.Filter("gaussian", 9, 1) # Filter it img_filtered = filtr.filterRGB(img) fig.add_subplot(1, 4, 3).title.set_text('Gaussian 9x9 sig=1') plt.axis('off') plt.imshow(img_filtered) # Create filter filtr = fltr.Filter("gaussian", 31, 1) # Filter it img_filtered = filtr.filterRGB(img) fig.add_subplot(1, 4, 4).title.set_text('Gaussian 31x31 sig=1') plt.axis('off') plt.imshow(img_filtered) # Show results plt.show()
def process(data, frame_count, time_info, status_flag): """ callback function to process audio input """ npdata = np.fromstring(data, dtype=np.int16) # create filter instance f = filters.Filter(npdata, rate=self.RATE) lowpass = f.middlepass(lowcut=self.lowpass_min, highcut=self.lowpass_max) highpass = f.middlepass(lowcut=self.highpass_min, highcut=self.highpass_max) bass = np.average(np.abs(lowpass)) / self.damping * 255 high = np.average(np.abs(highpass)) / self.damping * 255 r = self.bass_r * bass + self.high_r * high g = self.bass_g * bass + self.high_g * high b = self.bass_b * bass + self.high_b * high self.led.set_rgb(r, g, b) return (data, pyaudio.paContinue)
def test(): field_of_view_x = math_utils.radian_from_arcsec(300) field_of_view_y = math_utils.radian_from_arcsec(300) angular_coarseness = math_utils.radian_from_arcsec(0.2) wavelengths = np.linspace(400, 700, 30) * 1e-9 aperture_diameter = 0.15 secondary_diameter = 0.03 spider_wane_width = 0.006 focal_length = 0.75 system = imaging_system.ImagingSystem(field_of_view_x, field_of_view_y, angular_coarseness, wavelengths) print(system.source_grid.shape, system.source_grid.window.shape) star_field = sources.UniformStarField( stellar_density=math_utils. inverse_cubic_meters_from_inverse_cubic_parsecs(0.14), near_distance=math_utils.meters_from_parsecs(2), far_distance=math_utils.meters_from_parsecs(15000), seed=42) skyglow = sources.UniformBlackbodySkyglow(bortle_class=7, color_temperature=2800) imager = imagers.FraunhoferImager(aperture_diameter=aperture_diameter, focal_length=focal_length) aperture = apertures.CircularAperture( diameter=aperture_diameter ) #, inner_diameter=secondary_diameter, spider_wane_width=spider_wane_width) seeing = turbulence.AveragedKolmogorovTurbulence( reference_fried_parameter=0.08, minimum_psf_extent=30) filter_set = filters.FilterSet(filters.Filter('red', 595e-9, 680e-9), filters.Filter('green', 500e-9, 575e-9), filters.Filter('blue', 420e-9, 505e-9)) camera = cameras.Camera(filter_set=filter_set) system.set_imager(imager) system.set_aperture(aperture) system.set_camera(camera) system.add_source('star_field', star_field, store_field=True) system.add_source('skyglow', skyglow, store_field=True) system.add_image_postprocessor('seeing', seeing) print('Seeing FWHM: {:g} focal lengths'.format( np.sin(seeing.compute_approximate_time_averaged_FWHM( wavelengths[20])))) print('Rayleigh limit: {:g} focal lengths'.format( np.sin(system.compute_rayleigh_limit(wavelengths[20])))) parallel_utils.set_number_of_threads('auto') system.run_full_propagation() #system.visualize_energy_conservation() #star_field.plot_HR_diagram(absolute=0) #system.visualize_energy_conservation() #system.visualize_aperture_modulation_field('seeing', only_window=0) #system.visualize_total_aperture_modulation_field(only_window=1) #system.visualize_source_field('star_field') #system.visualize_source_field('skyglow') #system.visualize_total_source_field(use_autostretch=1, only_window=0) #system.visualize_aperture_field(use_autostretch=1, only_window=0) #system.visualize_modulated_aperture_field(use_autostretch=1, only_window=0) #system.visualize_image_field(use_autostretch=0) #system.visualize_postprocessed_image_field(use_autostretch=0) system.visualize_camera_signal_field( use_autostretch=1) #, filter_label='green'#, white_point_scale=0.01) for exposure_time in [1, 10, 100]: system.capture_exposure(exposure_time) system.visualize_captured_camera_signal_field( use_autostretch=1 ) #, filter_label='green'#, white_point_scale=0.01)
def cameramanBlur(): O = filters.Filter(K, blur) plt.imsave('figures/cameramanBlur.pdf', np.flipud(O), origin='lower') plt.clf()
warnings.filterwarnings('ignore') np.random.seed(1294404794) # Read example to run if len(sys.argv) != 2: print("Usage: python test.py <example>") sys.exit(1) example = sys.argv[1] # Read data from a csv file data_file = 'spx' data = np.loadtxt(data_file + '.csv', delimiter=',') # Example with an EMA, a Butterworth modified filter, and a type 2 Zero-lag EMA if (example == 'Filters'): spx = flt.Filter(data) ema = spx.EMA(N=10) butter = spx.ButterMod(P=10, N=2) zema = spx.ZEMA2(N=10, K=2.0) signals = [spx.data, ema, butter, zema] names = ['SPX', 'EMA', 'ButterMod', 'ZEMA2'] flt.plot_signals(signals, names=names, start=0, end=200) # Example with the three types of Kalman filter elif (example == 'Kalman'): spx = flt.Filter(data) a_type = spx.Kalman(sigma_x=0.1, sigma_v=0.1, dt=1.0, abg_type="a") ab_type = spx.Kalman(sigma_x=0.1, sigma_v=0.1, dt=1.0, abg_type="ab") abg_type = spx.Kalman(sigma_x=0.1, sigma_v=0.1, dt=1.0, abg_type="abg") signals = [spx.data, a_type, ab_type, abg_type] names = ['SPX', 'a-type', 'ab-type', 'abg-type']
config = yaml.load(confile.read()) # fetch ML data mnist = fetch_mldata('MNIST original') N, _ = mnist.data.shape image_width = config['image_width'] image_height = config['image_height'] # Reshape the data to be square mnist.square_data = mnist.data.reshape(N, image_width, image_height) layer1 = firstlayer.FirstLayer(1, mnist.square_data, mnist.target) # create filter my_filter = filters.Filter(filter_type) # normalize data to 3 bits normalized_images = layer1.preprocess(3) if args.run_all_images: run(cell_dict, config, layer1, my_filter, normalized_images) elif args.images and (args.images != 0): reduced_normalized_images = [] for image in args.images: reduced_normalized_images.append(normalized_images[image]) run(cell_dict, config, layer1, my_filter, reduced_normalized_images) else: run(cell_dict, config, layer1, my_filter, [normalized_images[0]])
print('output file (%s) has problems: %s.' % (args.outputfile, e)) return 1 # Then we start the actual code bits header, indent_depth = slax_header() output.write('\n'.join(header) + '\n') # Now we need to take the various inputs in the directory and make them # into slax terms try: files = os.listdir(args.sourcedir) except OSError, e: print('Error reading directory %s: %s' % (args.sourcedir, e)) firewall = filters.Firewall() fw_filter = filters.Filter('inbound-auto') firewall.filters.append(fw_filter) # Map (port, protocol) -> [list of ip] by_port_protocol = {} for f in files: fh = open(os.path.join(args.sourcedir, f)) # TODO: A CSV parser might be reasonable here. for line in fh.readlines(): name, ip, protocol, port = line.rstrip().split(',') by_port_protocol.setdefault((port, protocol), []).append(ip) fh.close() for (port, protocol), ips in by_port_protocol.iteritems(): term = filters.Term('port_%s_%s_v4' % (port, protocol))
def TestEdgeFilter(): img_path = "stop_1.png" fig = plt.figure(figsize=(1, 2)) # Show original image img = plt.imread(img_path) fig.add_subplot(2, 4, 1).title.set_text('Original') plt.axis('off') plt.imshow(img) # Load an image as matrix img = io.imread(img_path, as_gray=True) # Create filter filtr = fltr.Filter("left_sobel", 3) # Filter it img_filtered = filtr.filterGrayscale(img) fig.add_subplot(2, 4, 2).title.set_text('Left sobel filter 3x3') plt.axis('off') plt.imshow(img_filtered, cmap=plt.cm.gray) # Create filter filtr = fltr.Filter("right_sobel", 3) # Filter it img_filtered = filtr.filterGrayscale(img) fig.add_subplot(2, 4, 3).title.set_text('Right sobel filter 3x3') plt.axis('off') plt.imshow(img_filtered, cmap=plt.cm.gray) # Create filter filtr = fltr.Filter("bottom_sobel", 3) # Filter it img_filtered = filtr.filterGrayscale(img) fig.add_subplot(2, 4, 4).title.set_text('Bottom sobel filter 3x3') plt.axis('off') plt.imshow(img_filtered, cmap=plt.cm.gray) # Create filter filtr = fltr.Filter("top_sobel", 3) # Filter it img_filtered = filtr.filterGrayscale(img) fig.add_subplot(2, 4, 5).title.set_text('Top sobel filter 3x3') plt.axis('off') plt.imshow(img_filtered, cmap=plt.cm.gray) # Create filter filtr_top = fltr.Filter("top_sobel", 3) filtr_bottom = fltr.Filter("bottom_sobel", 3) filtr_left = fltr.Filter("left_sobel", 3) filtr_right = fltr.Filter("right_sobel", 3) # Filter it img_filtered = filtr_top.filterGrayscale(img) img_filtered = filtr_bottom.filterGrayscale(img_filtered) img_filtered = filtr_left.filterGrayscale(img_filtered) img_filtered = filtr_right.filterGrayscale(img_filtered) fig.add_subplot(2, 4, 6).title.set_text('All sobel filter 3x3') plt.axis('off') plt.imshow(img_filtered, cmap=plt.cm.gray) # Create filter filter_gauss = fltr.Filter("gaussian", 5, 0.8) filtr_top = fltr.Filter("top_sobel", 3) filtr_bottom = fltr.Filter("bottom_sobel", 3) filtr_left = fltr.Filter("left_sobel", 3) filtr_right = fltr.Filter("right_sobel", 3) # Filter it img_filtered = filter_gauss.filterGrayscale(img) img_filtered = filtr_top.filterGrayscale(img_filtered) img_filtered = filtr_bottom.filterGrayscale(img_filtered) img_filtered = filtr_left.filterGrayscale(img_filtered) img_filtered = filtr_right.filterGrayscale(img_filtered) fig.add_subplot(2, 4, 7).title.set_text('Gauss + All sobel filter 3x3') plt.axis('off') plt.imshow(img_filtered, cmap=plt.cm.gray) # Show results plt.show()