Ejemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--pretrained_model_path",
                        default=None,
                        type=str,
                        help="Path of the pretrained model.")
    parser.add_argument("--dataset_path_list",
                        default=[],
                        nargs='+',
                        type=str,
                        help="Dataset path list.")
    parser.add_argument("--output_model_path",
                        default="models/multitask_classifier_model.bin",
                        type=str,
                        help="Path of the output model.")
    parser.add_argument("--config_path",
                        default="models/bert/base_config.json",
                        type=str,
                        help="Path of the config file.")

    # Model options.
    model_opts(parser)
    parser.add_argument("--pooling",
                        choices=["mean", "max", "first", "last"],
                        default="first",
                        help="Pooling type.")

    # Tokenizer options.
    tokenizer_opts(parser)

    # Optimizer options.
    optimization_opts(parser)

    # Training options.
    training_opts(parser)

    adv_opts(parser)

    args = parser.parse_args()

    args.soft_targets = False

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Count the number of labels.
    args.labels_num_list = [
        count_labels_num(os.path.join(path, "train.tsv"))
        for path in args.dataset_path_list
    ]

    args.datasets_num = len(args.dataset_path_list)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)

    # Build multi-task classification model.
    model = MultitaskClassifier(args)

    # Load or initialize parameters.
    load_or_initialize_parameters(args, model)

    # Get logger.
    args.logger = init_logger(args)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(args.device)
    args.model = model

    if args.use_adv:
        args.adv_method = str2adv[args.adv_type](model)

    # Training phase.
    dataset_list = [
        read_dataset(args, os.path.join(path, "train.tsv"))
        for path in args.dataset_path_list
    ]
    packed_dataset_list = [
        pack_dataset(dataset, i, args.batch_size)
        for i, dataset in enumerate(dataset_list)
    ]

    packed_dataset_all = []
    for packed_dataset in packed_dataset_list:
        packed_dataset_all += packed_dataset

    instances_num = sum([len(dataset) for dataset in dataset_list])
    batch_size = args.batch_size

    args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    args.logger.info("Batch size: {}".format(batch_size))
    args.logger.info(
        "The number of training instances: {}".format(instances_num))

    optimizer, scheduler = build_optimizer(args, model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
        args.amp = amp

    if torch.cuda.device_count() > 1:
        args.logger.info("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)

    total_loss, result, best_result = 0.0, 0.0, 0.0

    args.logger.info("Start training.")

    for epoch in range(1, args.epochs_num + 1):
        random.shuffle(packed_dataset_all)

        model.train()
        for i, (dataset_id, src_batch, tgt_batch,
                seg_batch) in enumerate(packed_dataset_all):
            if hasattr(model, "module"):
                model.module.change_dataset(dataset_id)
            else:
                model.change_dataset(dataset_id)
            loss = train_model(args, model, optimizer, scheduler, src_batch,
                               tgt_batch, seg_batch, None)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                args.logger.info(
                    "Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                    format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.0

        for dataset_id, path in enumerate(args.dataset_path_list):
            args.labels_num = args.labels_num_list[dataset_id]
            if hasattr(model, "module"):
                model.module.change_dataset(dataset_id)
            else:
                model.change_dataset(dataset_id)
            result = evaluate(
                args, read_dataset(args, os.path.join(path, "dev.tsv")))

    save_model(model, args.output_model_path)
Ejemplo n.º 2
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    finetune_opts(parser)

    tokenizer_opts(parser)

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Count the number of labels.
    args.labels_num = count_labels_num(args.train_path)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)

    # Build classification model.
    model = SiameseClassifier(args)

    # Load or initialize parameters.
    load_or_initialize_parameters(args, model)

    # Get logger.
    args.logger = init_logger(args)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(args.device)

    # Training phase.
    trainset = read_dataset(args, args.train_path)
    instances_num = len(trainset)
    batch_size = args.batch_size

    args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    args.logger.info("Batch size: {}".format(batch_size))
    args.logger.info(
        "The number of training instances: {}".format(instances_num))

    optimizer, scheduler = build_optimizer(args, model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
        args.amp = amp

    if torch.cuda.device_count() > 1:
        args.logger.info("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    args.model = model

    total_loss, result, best_result = 0.0, 0.0, 0.0

    args.logger.info("Start training.")

    for epoch in range(1, args.epochs_num + 1):
        random.shuffle(trainset)
        src_a = torch.LongTensor([example[0][0] for example in trainset])
        src_b = torch.LongTensor([example[0][1] for example in trainset])
        tgt = torch.LongTensor([example[1] for example in trainset])
        seg_a = torch.LongTensor([example[2][0] for example in trainset])
        seg_b = torch.LongTensor([example[2][1] for example in trainset])

        model.train()
        for i, (src_batch, tgt_batch, seg_batch) in enumerate(
                batch_loader(batch_size, (src_a, src_b), tgt, (seg_a, seg_b))):
            loss = train_model(args, model, optimizer, scheduler, src_batch,
                               tgt_batch, seg_batch)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                args.logger.info(
                    "Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                    format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.0

        result = evaluate(args, read_dataset(args, args.dev_path))
        if result[0] > best_result:
            best_result = result[0]
            save_model(model, args.output_model_path)

    # Evaluation phase.
    if args.test_path is not None:
        args.logger.info("Test set evaluation.")
        if torch.cuda.device_count() > 1:
            args.model.module.load_state_dict(
                torch.load(args.output_model_path))
        else:
            args.model.load_state_dict(torch.load(args.output_model_path))
        evaluate(args, read_dataset(args, args.test_path))
Ejemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    finetune_opts(parser)

    parser.add_argument("--pooling",
                        choices=["mean", "max", "first", "last"],
                        default="first",
                        help="Pooling type.")

    tokenizer_opts(parser)

    parser.add_argument("--soft_targets",
                        action='store_true',
                        help="Train model with logits.")
    parser.add_argument("--soft_alpha",
                        type=float,
                        default=0.5,
                        help="Weight of the soft targets loss.")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Count the number of labels.
    args.labels_num = count_labels_num(args.train_path)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)

    # Build classification model.
    model = Classifier(args)

    # Load or initialize parameters.
    load_or_initialize_parameters(args, model)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(args.device)

    # Training phase.
    trainset = read_dataset(args, args.train_path)
    random.shuffle(trainset)
    instances_num = len(trainset)
    batch_size = args.batch_size

    src = torch.LongTensor([example[0] for example in trainset])
    tgt = torch.LongTensor([example[1] for example in trainset])
    seg = torch.LongTensor([example[2] for example in trainset])

    args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    print("Batch size: ", batch_size)
    print("The number of training instances:", instances_num)

    optimizer, scheduler = build_optimizer(args, model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
        args.amp = amp

    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    args.model = model

    total_loss, result, best_result = 0.0, 0.0, 0.0

    print("Start training.")

    for epoch in range(1, args.epochs_num + 1):
        model.train()
        for i, (src_batch, tgt_batch, seg_batch,
                _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
            loss = train_model(args, model, optimizer, scheduler, src_batch,
                               tgt_batch, seg_batch)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                      format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.0

        result = evaluate(args, read_dataset(args, args.dev_path))
        if result > best_result:
            best_result = result
            save_model(model, args.output_model_path)

    # Evaluation phase.
    if args.test_path is not None:
        print("Test set evaluation.")
        if torch.cuda.device_count() > 1:
            args.model.module.load_state_dict(
                torch.load(args.output_model_path))
        else:
            args.model.load_state_dict(torch.load(args.output_model_path))
        evaluate(args, read_dataset(args, args.test_path))