file.write("Last Node :" + str(last_node) + '\n') file.write("Units :" + str(units) + '\n') file.write("filter_A :" + str(filter_A) + '\n') file.write("filter_B :" + str(filter_B) + '\n') # file.write("filter_C :" + str(filter_C) + '\n') file.write("Optimizer :" + str(optimizer) + '\n\n') stop_tset = clock() elap_tset = stop_tset - start_tset Total_time_tset = int(elap_tset / 60) file.write("The Elapsed Time for this test set :" + str(Total_time_tset) + ' min' + '\n') print ("The Elapsed Time for this test set :" + str(Total_time_tset) + ' min' + '\n') file.write('===================================================================' + '\n\n') file.close() finish_alarm.ring('piano01') print('Test set ' + str(tn) + ' is complete.') score_recog = '{0:.3f}'.format(score[1]) mv_score = '{0:.3f}'.format(mv_score) if speak ==1: try: speak_str('Test set. ' + str(tn) + ' is complete.') speak_str('The recognition score is, ' + score_recog +'.' + score_recog +'.') speak_str('and the majority vote score is, ' + mv_score +'.' + mv_score +'.') finally: print ()
def set_data(open_data,test_set_num, valid_set_num, speak): ''' set_file.py This python file divides pickle data into Train set, Valid set, Test set. ''' ############################################################################# # open_data = 'data_j1_01010101_SR48kHz' # open_data = 'data_j1_11111111_SR48kHz' # open_data = 'class13_data_j1_01010101_SR48kHz' ############################################################################# pickle_path = 'pickle_folder/' with open(pickle_path + open_data + '.pickle') as f: sum_mat_X_data, sum_mat_y_data, sum_mat_k_data, sum_mat_D_data, jump_num, FN, nb_classes = pickle.load(f) print "The feature data per one inst sample is (=jump_num) :", jump_num ## Set the key for test set and validation set. ## The whole data is divided into 10 different data sets. ## You can choose a key number from 1 to 10. # val_key = [[8],[9]] # # val_key = [] # tst_key = [[7],[1]] val_key = [valid_set_num] # val_key =[] tst_key = [test_set_num] # print "shape of sum_mat_X_data", shape(sum_mat_X_data) # print "shape of sum_mat_y_data", shape(sum_mat_y_data) # print "shape of sum_mat_k_data", shape(sum_mat_k_data) # print "shape of sum_mat_D_data", shape(sum_mat_D_data) # print sum_mat_k_data ## Call "test_set.set_train_data" function to divide data X_train, X_test, X_valid, y_train, y_test, y_valid, k_train, k_test, k_valid, D_train, D_test, D_valid \ = test_set_val.set_train_data(sum_mat_X_data,sum_mat_y_data,sum_mat_k_data, sum_mat_D_data, tst_key, val_key) # print "k_test:", k_test.T # print "y_test:", y_test.T # print "y_train:", y_train.T # print "shape of X_train", shape(X_train). # print "shape of X_test", shape(X_test). # print "shape of X_valid", shape(X_valid) # print "shape of X_train", shape(X_train) # print "shape of X_test", shape(X_test) # print "shape of X_valid", shape(X_valid) # # print "shape of y_train", shape(y_train) # print "shape of y_test", shape(y_test) # print "shape of y_valid", shape(y_valid) # # # print "shape of k_train", shape(k_train) # print "shape of k_test", shape(k_test) # print "shape of k_valid", shape(k_valid) # # print "shape of D_train", shape(D_train) # print "shape of D_test", shape(D_test) # print "shape of D_valid", shape(D_valid) print "\n" + open_data + " : DATA set ready! \n" # speak_str('Data seperation for test set '+ str(test_set_num) +' is complete.') if speak == 1 : try: speak_str('Initiate classification for test set '+ str(test_set_num)+ '.'+'\n') except ConnectionError as e: print ('ConnectionError \n') finish_alarm.ring('guitar_c3_04') return X_train, X_test, X_valid, y_train, y_test, y_valid, D_train, D_test, D_valid, jump_num, FN, nb_classes, open_data
file.write( vars_str[k] + ":"+ str(var) +"\n") file.write( "random seed" + ":" + str(seed_n) + "\n") file.write( "div_margin" + ":" + str(div_margin) + "\n") file.write( "min_margin" + ":" + str(min_margin) + "\n") file.write( "nb_classes is :"+str(nb_classes)+"\n") file.write( "inst_index"+str(inst_index)+"\n") file.write( "itv_stride"+str(itv_stride)+"\n\n") file.write( "Instruments(folder_name) : " + str(folder_name[family]) + "\n" ) file.write( data_note +'\n') file.close() # print sum_mat_D_data t_stop = clock() elapsed_time = int(int(t_stop - t_start)/60) print 'Feature extraction process for ' + rand_animal + ' is complete' print 'Elapsed time is :'+ str(elapsed_time) +' minutes ' print pickle_file + ' has been finished.' if speak == 1: try: finish_alarm.ring('bell01') speak_str('Feature extraction process for ' + rand_animal + ' is complete.') speak_str('Elapsed time is :'+ str(elapsed_time) +' minutes ') except ConnectionError as e: print ('ConnectionError! Check the Wifi Connection. \n') print 'sample count:', sample_count