Ejemplo n.º 1
0
    def check_energy_for_m(m, E_expected):
        """
        Helper function to compare the computed energy for a given
        magnetisation with an expected analytical value.
        """
        m_field = Field(S3)
        m_field.set(df.Constant(m))
        H_ext = Zeeman(H * np.array([1, 0, 0]))
        H_ext.setup(m_field, Ms, unit_length=unit_length)

        E_computed = H_ext.compute_energy()
        assert np.allclose(E_computed, E_expected, atol=0, rtol=1e-12)
Ejemplo n.º 2
0
    def check_energies(m=None, theta=None):
        """
        Helper function to compare the computed energy for a given
        magnetisation with an expected analytical value. The argument
        theta is the angle between the magnetisation vector and the
        x-axis.

        """
        # Exactly one of m, theta must be given
        assert ((m is None or theta is None)
                and not (m is None and theta is None))
        if m is None:
            if theta is None:
                raise ValueError("Exactly one of m, theta must be given.")
            theta_rad = theta * pi / 180.
            m = (cos(theta_rad), sin(theta_rad), 0)
        else:
            if theta != None:
                raise ValueError("Exactly one of m, theta must be given.")
        m = m / np.linalg.norm(m)
        m_field = Field(S3)
        m_field.set(df.Constant(m))
        H_ext = Zeeman(H * np.array([1, 0, 0]))
        H_ext.setup(m_field,
                    Field(df.FunctionSpace(mesh, 'DG', 0), Ms),
                    unit_length=unit_length)

        #E_analytical_1 = -mu0 * Ms * H * volume_1 * cos(theta_rad)
        E_analytical_1 = -mu0 * Ms * H * volume_1 * np.dot(m, [1, 0, 0])
        E_analytical_2 = -mu0 * Ms * H * volume_2 * np.dot(m, [1, 0, 0])
        E_analytical_total = E_analytical_1 + E_analytical_2

        E_computed_1 = H_ext.compute_energy(dx=dx_disk_1)
        E_computed_2 = H_ext.compute_energy(dx=dx_disk_2)
        E_computed_total = H_ext.compute_energy(dx=df.dx)

        # Check that the sum of the computed energies for disk #1 and #2 equals
        # the total computed energy
        assert np.allclose(E_computed_1 + E_computed_2,
                           E_computed_total,
                           atol=0,
                           rtol=1e-12)

        # Check that the computed energies are within the tolerance of the
        # analytical expressions
        assert np.allclose(E_computed_1, E_analytical_1, atol=0, rtol=RTOL)
        assert np.allclose(E_computed_2, E_analytical_2, atol=0, rtol=RTOL)
        assert np.allclose(E_computed_total,
                           E_analytical_total,
                           atol=0,
                           rtol=RTOL)
Ejemplo n.º 3
0
def test_dmdt_computation_with_oommf():
    # set up finmag
    llg = LLG(S1, S3)
    llg.set_m((-3, -2, 1))

    Ms = llg.Ms.vector().array()[0]
    Ms = float(Ms)
    h = Ms / 2
    H_app = (h / np.sqrt(3), h / np.sqrt(3), h / np.sqrt(3))
    zeeman = Zeeman(H_app)
    zeeman.setup(llg.m_field, llg.Ms, 1)
    llg.effective_field.add(zeeman)

    dmdt_finmag = df.Function(llg.S3)
    dmdt_finmag.vector()[:] = llg.solve(0)

    # set up oommf
    msh = mesh.Mesh((nL, nW, nH), size=(L, W, H))
    m0 = msh.new_field(3)
    m0.flat[0] += -3
    m0.flat[1] += -2
    m0.flat[2] += 1
    m0.flat /= np.sqrt(m0.flat[0] * m0.flat[0] + m0.flat[1] * m0.flat[1] +
                       m0.flat[2] * m0.flat[2])

    dmdt_oommf = oommf_dmdt(m0, Ms, A=0, H=H_app, alpha=0.5,
                            gamma_G=llg.gamma).flat

    # extract finmag data for comparison with oommf
    dmdt_finmag_like_oommf = msh.new_field(3)
    for i, (x, y, z) in enumerate(msh.iter_coords()):
        dmdt_x, dmdt_y, dmdt_z = dmdt_finmag(x, y, z)
        dmdt_finmag_like_oommf.flat[0, i] = dmdt_x
        dmdt_finmag_like_oommf.flat[1, i] = dmdt_y
        dmdt_finmag_like_oommf.flat[2, i] = dmdt_z

    # compare
    difference = np.abs(dmdt_finmag_like_oommf.flat - dmdt_oommf)
    relative_difference = difference / np.max(
        np.sqrt(dmdt_oommf[0]**2 + dmdt_oommf[1]**2 + dmdt_oommf[2]**2))
    print "comparison with oommf, dm/dt, relative difference:"
    print stats(relative_difference)
    assert np.max(relative_difference) < TOLERANCE

    return difference, relative_difference
Ejemplo n.º 4
0
def example2(Ms):
    x0 = y0 = z0 = 0
    x1 = 500
    y1 = 10
    z1 = 100
    nx = 50
    ny = 1
    nz = 1
    mesh = df.Box(x0, y0, z0, x1, y1, z1, nx, ny, nz)

    S1 = df.FunctionSpace(mesh, "Lagrange", 1)
    S3 = df.VectorFunctionSpace(mesh, "Lagrange", 1, dim=3)

    llb = LLB(S1, S3)

    llb.alpha = 0.01
    llb.beta = 0.0
    llb.M0 = Ms
    llb.set_M((Ms, 0, 0))
    llb.set_up_solver(jacobian=False)
    llb.chi = 1e-4

    H_app = Zeeman((0, 0, 5e5))
    H_app.setup(S3, llb._M, Ms=1)
    llb.interactions.append(H_app)

    exchange = Exchange(13.0e-12, 1e-2)
    exchange.chi = 1e-4
    exchange.setup(S3, llb._M, Ms, unit_length=1e-9)
    llb.interactions.append(exchange)

    demag = Demag("FK")
    demag.setup(S3, llb._M, Ms=1)
    llb.interactions.append(demag)

    max_time = 1 * np.pi / (llb.gamma * 1e5)
    ts = np.linspace(0, max_time, num=100)

    for t in ts:
        print t
        llb.run_until(t)

        df.plot(llb._M)

    df.interactive()
Ejemplo n.º 5
0
def example1(Ms=8.6e5):
    x0 = y0 = z0 = 0
    x1 = y1 = z1 = 10
    nx = ny = nz = 1
    mesh = df.Box(x0, x1, y0, y1, z0, z1, nx, ny, nz)

    S1 = df.FunctionSpace(mesh, "Lagrange", 1)
    S3 = df.VectorFunctionSpace(mesh, "Lagrange", 1, dim=3)
    vis = df.Function(S3)

    llb = LLB(S1, S3)

    llb.alpha = 0.01
    llb.beta = 0.0
    llb.M0 = Ms
    llb.set_M((Ms, 0, 0))
    llb.set_up_solver(jacobian=False)
    llb.chi = 1e-4

    H_app = Zeeman((0, 0, 1e5))
    H_app.setup(S3, llb._M, Ms=1)
    llb.interactions.append(H_app)

    exchange = Exchange(13.0e-12, 1e-2)
    exchange.chi = 1e-4
    exchange.setup(S3, llb._M, Ms, unit_length=1e-9)

    llb.interactions.append(exchange)

    max_time = 2 * np.pi / (llb.gamma * 1e5)
    ts = np.linspace(0, max_time, num=100)

    mlist = []
    Ms_average = []
    for t in ts:
        llb.run_until(t)
        mlist.append(llb.M)
        vis.vector()[:] = mlist[-1]
        Ms_average.append(llb.M_average)
        df.plot(vis)
        time.sleep(0.00)
    print 'llb times', llb.call_field_times
    save_plot(ts, Ms_average, 'Ms_%g-time.png' % Ms)
    df.interactive()
Ejemplo n.º 6
0
def example1_sundials(Ms):
    x0 = y0 = z0 = 0
    x1 = y1 = z1 = 10
    nx = ny = nz = 1
    mesh = df.Box(x0, x1, y0, y1, z0, z1, nx, ny, nz)

    S1 = df.FunctionSpace(mesh, "Lagrange", 1)
    S3 = df.VectorFunctionSpace(mesh, "Lagrange", 1, dim=3)
    vis = df.Function(S3)

    llb = LLB(S1, S3)
    llb.alpha = 0.00
    llb.set_m((1, 1, 1))
    llb.Ms = Ms
    H_app = Zeeman((0, 0, 1e5))
    H_app.setup(S3, llb._m, Ms=Ms)
    llb.interactions.append(H_app)
    exchange = BaryakhtarExchange(13.0e-12, 1e-2)
    exchange.setup(S3, llb._m, llb._Ms)
    llb.interactions.append(exchange)

    integrator = llg_integrator(llb, llb.M, abstol=1e-10, reltol=1e-6)

    max_time = 2 * np.pi / (llb.gamma * 1e5)
    ts = np.linspace(0, max_time, num=50)

    mlist = []
    Ms_average = []
    for t in ts:
        integrator.advance_time(t)
        mlist.append(integrator.m.copy())
        llb.M = mlist[-1]
        vis.vector()[:] = mlist[-1]
        Ms_average.append(llb.M_average)
        df.plot(vis)
        time.sleep(0.0)
    print llb.count
    save_plot(ts, Ms_average, 'Ms_%g-time-sundials.png' % Ms)
    df.interactive()
Ejemplo n.º 7
0
def example1(Ms=8.6e5):
    x0 = y0 = z0 = 0
    x1 = y1 = z1 = 10
    nx = ny = nz = 1
    mesh = df.Box(x0, x1, y0, y1, z0, z1, nx, ny, nz)

    S1 = df.FunctionSpace(mesh, "Lagrange", 1)
    S3 = df.VectorFunctionSpace(mesh, "Lagrange", 1, dim=3)
    vis = df.Function(S3)

    llb = LLB(S1, S3, rtol=1e-6, atol=1e-10)
    llb.Ms = Ms
    llb.alpha = 0.0
    llb.set_m((1, 1, 1))
    H_app = Zeeman((0, 0, 1e5))
    H_app.setup(S3, llb._m, Ms=Ms)
    llb.interactions.append(H_app)
    exchange = BaryakhtarExchange(13.0e-12, 1e-5)
    exchange.setup(S3, llb._m, llb._Ms)
    llb.interactions.append(exchange)

    max_time = 2 * np.pi / (llb.gamma * 1e5)
    ts = np.linspace(0, max_time, num=100)

    mlist = []
    Ms_average = []
    for t in ts:
        llb.run_until(t)
        mlist.append(llb.M)
        vis.vector()[:] = mlist[-1]
        Ms_average.append(llb.M_average)
        df.plot(vis)
        time.sleep(0.00)
    print llb.count
    save_plot(ts, Ms_average, 'Ms_%g-time.png' % Ms)
    df.interactive()