def getDataset(scene_path, pol):

    ds = None
    transform = {}

    # generate file list
    filelist = fio.getFileList(
        'S1*_*{}_tnr_bnr_Orb_Cal_ML_TF_TC_dB.tif'.format(pol), scene_path)
    if len(filelist) == 1:

        # open raster
        ds = gdal.Open(filelist[0])
        if ds is not None:

            transform['fwd'] = affine.Affine.from_gdal(*ds.GetGeoTransform())
            transform['rev'] = ~transform['fwd']

            band = ds.GetRasterBand(1)

    return {'ds': ds, 'band': band, 'transform': transform}
Ejemplo n.º 2
0
def compileVrt(scene, product):

    out_pathname = None

    # generate file list
    filelist = fio.getFileList('*', scene)
    if len(filelist) > 0:

        # need to guarantee consistent band ordering
        sorted_list = []

        # for each band
        bands = product.getElementsByTagName('band')
        for band in bands:

            if (band.hasAttribute("filename")):

                for obj in filelist:

                    # add entry to sort list if configuration matches argument
                    if fnmatch.fnmatch(os.path.basename(obj),
                                       str(band.attributes["filename"].value)):

                        sorted_list.append(obj)
                        break

    # build vrt on validation of successful sort
    if len(sorted_list) == len(bands):

        out_pathname = scene + '/' + product.attributes["name"].value + '.vrt'
        updateImages(sorted_list)

        vrt = gdal.BuildVRT(out_pathname,
                            sorted_list,
                            options=gdal.BuildVRTOptions(separate=True))
        vrt = None

    return out_pathname
Ejemplo n.º 3
0
def checkScene(pathname):

    sceneOK = False

    # decompress product file
    path = os.path.dirname(pathname)

    out, err, code = ps.execute('unzip', ["-o", "-d", path, pathname])
    if (code <= 1):

        filelist = fio.getFileList('*.tiff', path)
        if len(filelist) > 0:

            # open scene and extract gcps
            in_ds = gdal.Open(filelist[0])
            gcps = in_ds.GetGCPs()

            min_x = 180
            max_x = -180
            for gcp in gcps:

                min_x = min(min_x, gcp.GCPX)
                max_x = max(max_x, gcp.GCPX)

            # large longitude difference when crossing antimeridian
            if max_x - min_x < 10:
                sceneOK = True
            else:
                print('... scene crosses antimeridan - skipping: {}'.format(
                    pathname))

    # housekeeping of raw zip sub-folder
    zip_path = os.path.splitext(pathname)[0]
    if (os.path.exists(zip_path)):
        shutil.rmtree(zip_path)

    return sceneOK
Ejemplo n.º 4
0
def getSceneList(args):

    scene_list = []

    # single file argument
    if args.file is not None:
        scene_list.append(args.file)

    else:

        # generate file list
        filelist = fio.getFileList('*.zip', args.path)
        if len(filelist) > 0:

            # parse datetime from pathname
            for obj in filelist:
                dt = parser.getDateTime(obj)

                # get files satisfying constraints
                if dt.timestamp() >= args.start.timestamp() and dt.timestamp(
                ) <= args.end.timestamp():
                    scene_list.append(obj)

    return sorted(scene_list)
Ejemplo n.º 5
0
                out_path = os.path.join(ard_path, args.product)

                # geocode scene
                geocode(
                    scene=scene,
                    dem=args.dem,
                    tempdir=os.path.join(out_path, 'process'),
                    outdir=out_path,
                    targetres=args.res,
                    scaling='db',
                    func_geoback=1,
                    # cleanup=False,
                    export_extra=['inc_geo', 'ls_map_geo'])

                # reproject imagery to epsg:3460
                image_list = fio.getFileList('S1*.tif', out_path)
                options = reproject.getTransform(image_list[0], {
                    't_epsg': 32760,
                    'res_x': 20,
                    'res_y': 20
                })

                for img_pathname in image_list:

                    warp_pathname = img_pathname.replace('.tif', '_warp.tif')
                    reproject.toEpsg(
                        img_pathname, warp_pathname, options,
                        ['TILED=YES', 'BLOCKXSIZE=256', 'BLOCKYSIZE=256'])

            else:
                print('scene crosses anti-meridian: ' + scene)
plt.ylabel("relative information")
plt.xlabel("features")
plt.show()

# compute svm fit
#model = SVC( kernel='rbf' )
model = MLPClassifier(hidden_layer_sizes=(30, 30, 30), max_iter=1000)
model.fit(X, y)

y_pred = model.predict(X)

print(confusion_matrix(y, y_pred))
print(classification_report(y, y_pred))

# generate file list
filelist = fio.getFileList('S1*_VV_tnr_bnr_Orb_Cal_ML_TF_TC_dB.tif',
                           '/data/ard/fiji')
for obj in filelist:

    path = os.path.dirname(obj)

    # get training set
    feature, name_list = getFeatureFrame(sample, path, 1000)

    # get scatter matrix
    X, y = getScatterMatrix(feature)
    #plotFeatureSeparability( X, y, name_list )

    y_pred = model.predict(X)

    print(path)
    print(confusion_matrix(y, y_pred))