Ejemplo n.º 1
0
    def __init__(self,
                 X=None,
                 T=None,
                 time_steps=5,
                 max_time=0.4,
                 num_cells=25,
                 L=1.):
        """Initialize the objet.

        Keyword Arguments:
            X           ---     The sensor locations.
            T           ---     The sensor measurment times.
            time_steps  ---     How many timesteps do you want to measure.
            max_time    ---     The maximum solution time.
            num_cells   ---     The number of cells per dimension.
            L           ---     The size of the computational domain.
        """
        assert isinstance(num_cells, int)
        self._num_cells = num_cells
        assert isinstance(L, float) and L > 0.
        self._dx = L / self.num_cells
        self._mesh = Grid2D(dx=self.dx,
                            dy=self.dx,
                            nx=self.num_cells,
                            ny=self.num_cells)
        self._phi = CellVariable(name='solution variable', mesh=self.mesh)
        self._source = CellVariable(name='source term',
                                    mesh=self.mesh,
                                    hasOld=True)
        self._eqX = TransientTerm() == ExplicitDiffusionTerm(
            coeff=1.) + self.source
        self._eqI = TransientTerm() == DiffusionTerm(coeff=1.) + self.source
        self._eq = self._eqX + self._eqI
        assert isinstance(max_time, float) and max_time > 0.
        self._max_time = max_time
        #self.max_time / time_steps #.
        if X is None:
            idx = range(self.num_cells**2)
        else:
            idx = []
            x1, x2 = self.mesh.cellCenters
            for x in X:
                dist = (x1 - x[0])**2 + (x2 - x[1])**2
                idx.append(np.argmin(dist))
        self._idx = idx
        if T is None:
            T = np.linspace(0, self.max_time, time_steps)[1:]
        self._max_time = T[-1]
        self._T = T
        self._dt = self.T[0] / time_steps
        super(Diffusion, self).__init__(5,
                                        len(self.T) * len(self.idx),
                                        name='Diffusion Solver')
Ejemplo n.º 2
0
alpha = 0.015
temperature = 1.

dx = L / nx

mesh = Grid1D(dx=dx, nx=nx)

phase = CellVariable(name='PhaseField', mesh=mesh, value=1.)

theta = ModularVariable(name='Theta', mesh=mesh, value=1.)
theta.setValue(0., where=mesh.cellCenters[0] > L / 2.)

mPhiVar = phase - 0.5 + temperature * phase * (1 - phase)
thetaMag = theta.old.grad.mag
implicitSource = mPhiVar * (phase - (mPhiVar < 0))
implicitSource += (2 * s + epsilon**2 * thetaMag) * thetaMag

phaseEq = TransientTerm(phaseTransientCoeff) == \
          ExplicitDiffusionTerm(alpha**2) \
          - ImplicitSourceTerm(implicitSource) \
          + (mPhiVar > 0) * mPhiVar * phase

if __name__ == '__main__':

    phaseViewer = Viewer(vars=phase)
    phaseViewer.plot()
    for step in range(steps):
        phaseEq.solve(phase, dt=timeStepDuration)
        phaseViewer.plot()
    input('finished')
Ejemplo n.º 3
0
from fipy import CellVariable, Tri2D, TransientTerm, ExplicitDiffusionTerm, DefaultSolver, Viewer
from fipy.tools import numerix

dx = 1.
dy = 1.
nx = 10
ny = 1
valueLeft = 0.
valueRight = 1.
timeStepDuration = 0.02

mesh = Tri2D(dx, dy, nx, ny)

var = CellVariable(name="concentration", mesh=mesh, value=valueLeft)

eq = TransientTerm() == ExplicitDiffusionTerm()

solver = DefaultSolver(tolerance=1e-6, iterations=1000)

var.constrain(valueLeft, mesh.facesLeft)
var.constrain(valueRight, mesh.facesRight)

answer = numerix.array([
    0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
    0.00000000e+00, 0.00000000e+00, 1.58508452e-07, 6.84325019e-04,
    7.05111362e-02, 7.81376523e-01, 0.00000000e+00, 0.00000000e+00,
    0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
    0.00000000e+00, 4.99169535e-05, 1.49682805e-02, 3.82262622e-01,
    0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
    0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.06838361e-06,
    3.67632029e-03, 1.82227062e-01, 0.00000000e+00, 0.00000000e+00,
Ejemplo n.º 4
0
# Provide value for diffusion coefficient 
D = 1.0

# Setting boundary conditions
valueLeft = 1.0
valueRight = 0.0

c.constrain(valueLeft, mesh.facesLeft)
c.constrain(valueRight, mesh.facesRight)

# Specifying our alpha value
alpha = 0

# Defining the equation with alpha which gives us the flexibility to choose the time-stepping scheme
eq = (TransientTerm() == DiffusionTerm(coeff= alpha* D) + ExplicitDiffusionTerm(coeff = (1.0 - alpha)*D))


# dt = 0.00018 should be stable for forward Euler with the default simulation conditions
dt = 0.00018

# We might not want to see the output from every single timestep, so we define a stride parameter
time_stride = 1
timestep = 0
run_time = 1


# We need to implement the analytical solution. We can do two solutions: 1) Full solution, 2) S.S. solution
pi = numerix.pi
x = mesh.cellCenters[0]
t = Variable(0.0)
Ejemplo n.º 5
0
    try:
        print("\n done") #Intermediate Print Statement
        viewer = VTKViewer(vars=phi,datamin=0., datamax=1.) #Changed Statement
        print("\n Daemon file") #Intermediate Print Statement
    except (NameError,ImportError,SystemError,TypeError):
        viewer = VTKViewer(vars=phi,datamin=0., datamax=1.) #Changed Statement


viewer.plot(filename="trial.vtk") #It will only save the final vtk file. You can change the name

eqI = (TransientTerm()
      == DiffusionTerm(coeff=D)
      - ExponentialConvectionTerm(coeff=Teff)) # doctest: +GMSH

eqX = (TransientTerm()
      == ExplicitDiffusionTerm(coeff=D)
      - ExponentialConvectionTerm(coeff=Teff)) # doctest: +GMSH

steps = 1000
timeStepDuration = 1e-6
time = 0
for step in range(steps):
    if step < 0 :
        eqX.solve(var=phi,
                 dt=timeStepDuration)
    else:
        eqI.solve(var=phi,
                 dt=timeStepDuration)
    time = time + timeStepDuration
    if __name__ == "__main__":#Parameters to be changed are in the seciton below.
        viewer.plot(filename="trial.vtk") #It will only save the final vtk file. You can change the name