Ejemplo n.º 1
0
def make_fix_twiddle(N, bits, fraction, offset=0.0, method="round"):
    twids = cfixpoint(bits, fraction, offset=offset, method=method)
    tmp = cfixpoint(bits, fraction, offset=offset, method=method)
    twids.from_complex(np.zeros(N // 2, dtype=np.complex))
    for i in range(0, N // 2):
        tmp.from_complex(np.exp(-2 * i * np.pi * 1j / N))
        twids[i] = tmp
    return twids
Ejemplo n.º 2
0
    def run(self, DATA, cont=False):
        if (cont == False):
            size = DATA.data.shape[0]  #get length of data stream
            stages = size // self.N  #how many cycles of commutator

            X = cfixpoint(self.bits,
                          self.fraction,
                          unsigned=self.unsigned,
                          offset=self.offset,
                          method=self.method)
            X.from_complex(np.zeros([self.N,
                                     stages]))  #will be tapsize x stage

            for i in range(
                    0, stages
            ):  #for each stage, populate all firs, and run FFT once
                if (i == 0):
                    X[:, i] = iterffft_natural_DIT(
                        self._FIR(DATA[i * self.N:i * self.N + self.N]),
                        self.twids, self.shiftreg.copy(), self.bits,
                        self.fraction)
                else:
                    X[:, i] = iterffft_natural_DIT(
                        self._FIR(DATA[i * self.N - 1:i * self.N +
                                       self.N - 1]), self.twids,
                        self.shiftreg.copy(), self.bits, self.fraction)
            if (self.dual):
                self._split(X)
                self.H_k = self._pow(self.H_k)
                self.G_k = self._pow(self.G_k)
            else:
                self.X_k = self._pow(X)
        else:
            pass
Ejemplo n.º 3
0
    def _split(self, Yk):
        #reverse the arrays for the splitting function correctly
        R_k = Yk.real.copy()
        I_k = Yk.imag.copy()

        R_kflip = R_k.copy()
        R_kflip[1:] = R_kflip[:0:-1]

        I_kflip = I_k.copy()
        I_kflip[1:] = I_kflip[:0:-1]

        self.G_k = cfixpoint(real=R_k + R_kflip, imag=I_k -
                             I_kflip)  #declares two variables for 2 pols
        self.G_k >> 1  #for bit growth from addition
        self.G_k.bits = self.bits_fft
        self.G_k.normalise()

        self.H_k = cfixpoint(real=I_k + I_kflip, imag=R_kflip - R_k)
        self.H_k >> 1
        self.H_k.bits = self.bits_fft
        self.H_k.normalise()
Ejemplo n.º 4
0
    def _split(self, Yk):
        R_k = Yk.real.copy()
        I_k = Yk.imag.copy()

        R_kflip = R_k.copy()
        R_kflip[1:] = R_kflip[:0:-1]

        I_kflip = I_k.copy()
        I_kflip[1:] = I_kflip[:0:-1]

        self.G_k = cfixpoint(real=R_k + R_kflip, imag=I_k - I_kflip)
        self.G_k >> (self.G_k.bits - self.bits)
        self.G_k.bits = self.bits
        self.G_k.fraction = self.fraction
        self.G_k.normalise()

        self.H_k = cfixpoint(real=I_k + I_kflip, imag=R_kflip - R_k)
        self.H_k >> (self.H_k.bits - self.bits)
        self.H_k.bits = self.bits
        self.H_k.fraction = self.fraction
        self.H_k.normalise()
Ejemplo n.º 5
0
 def _FIR(self, x):
     X_real = self.reg_real * self.window
     X_real >> self.bits + 1
     X_imag = self.reg_imag * self.window
     X_imag >> (self.bits + 1)
     X = cfixpoint(real=X_real.sum(axis=1), imag=X_imag.sum(axis=1))
     X >> int(np.log2(self.taps))
     X.bits = self.bits
     X.fraction = self.fraction
     X.normalise()
     self.reg_real.data = np.column_stack(
         (x.real.data, self.reg_real.data))[:, :-1]
     self.reg_imag.data = np.column_stack((
         x.imag.data,
         self.reg_imag.data))[:, :-1]  #push and pop from FIR register array
     return X
Ejemplo n.º 6
0
    def _FIR(self, x):
        #push and pop from FIR register array
        self.reg_real.data = np.column_stack(
            (x.real.data, self.reg_real.data))[:, :-1]
        self.reg_imag.data = np.column_stack(
            (x.imag.data, self.reg_imag.data))[:, :-1]

        X_real = self.reg_real * self.window  #compute real and imag products
        X_imag = self.reg_imag * self.window
        prodgrth = X_real.fraction - self.frac_fft  #-1 since the window coeffs have -1 less fraction
        X = cfixpoint(real=X_real.sum(axis=1), imag=X_imag.sum(axis=1))
        X >> prodgrth + self.firsc  #remove growth
        X.bits = self.bits_fft  #normalise to correct bit and frac length
        X.fraction = self.frac_fft
        X.normalise()
        X.method = self.fftmethod  #adjust so that it now uses FFT rounding scheme

        return X  #FIR output
    """
    percent = ("{0:." + str(decimals) + "f}").format(
        100 * (iteration / float(total)))
    filledLength = int(length * iteration // total)
    bar = fill * filledLength + '-' * (length - filledLength)
    print('%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end="\r")
    # Print New Line on Complete
    if iteration == total:
        print()


N = 2**13
accumval = 500
dmpnum = 0

fixinputev = cfixpoint(17, 17, method="ROUND")  #18bit using even rounding
fixtwidsev = make_fix_twiddle(
    N, 17, 16, method="ROUND")  #18 bit twiddle factor that uses even rounding
fixtwidsev = bitrevfixarray(fixtwidsev, fixtwidsev.data.size)

fixinputinf = cfixpoint(17, 17,
                        method="ROUND_INFTY")  #18bit using infty rounding
fixtwidsinf = make_fix_twiddle(
    N, 17, 16,
    method="ROUND_INFTY")  #18 bit twiddle factor that uses infty rounding
fixtwidsinf = bitrevfixarray(fixtwidsinf, fixtwidsinf.data.size)

floattwids = make_twiddle(N)
floattwids = bitrevarray(floattwids, floattwids.size)

output_vectorev = fixpoint(31, 31, method="ROUND")
Ejemplo n.º 8
0
from fixpoint import cfixpoint
from collections import deque

N = 256
n = np.arange(N)
bits = 18
fraction = 18
method = "truncate"

####SIGNALS######
sig1 = np.cos(2 * np.pi * n / N) / 2.5
sig2 = np.zeros(N) / 2.5
sig2[10:20] = 1
sig3 = sig1 + 1j * sig2

fsig1 = cfixpoint(bits, fraction, method=method)
fsig2 = cfixpoint(bits, fraction, method=method)
fsig3 = cfixpoint(bits, fraction, method=method)
fsig1.from_complex(sig1)
fsig2.from_complex(sig2)
fsig3.from_complex(sig3)

####PARAMS####
twidsfloat = make_twiddle(N)
twidsfloat = bitrevarray(twidsfloat, twidsfloat.size)
twidsfix = make_fix_twiddle(N, bits, fraction - 1, method=method)
twidsfix = bitrevfixarray(twidsfix, twidsfix.data.size)


#TEST FFT's#
def iterfft_test(s, w, st):
Ejemplo n.º 9
0
N = 2**15  #32k
iters = 1  #100k multiplied by the 10 from running individual processes.
multiple = 92.1  #number of waves per period - purposefully commensurate over 10 x 32k
#we will generate 10 x 32k signals for multiprocessing before abs and summing and saving
resultarray = np.zeros((N, 10), dtype=np.float64)


def FFT(ID, DATA, twid, shiftreg, bits, fraction, coeffbits):
    resultarray[:, ID] = np.abs(
        iterffft_natural_DIT(DATA, twid, shiftreg, bits, fraction,
                             coeffbits).to_complex())


#Generate 10 input signals
sig1 = cfixpoint(22, 22)  #22 bit fixpoint number that will use even-rounding
sig2 = cfixpoint(22, 22)
sig3 = cfixpoint(22, 22)
sig4 = cfixpoint(22, 22)
sig5 = cfixpoint(22, 22)
sig6 = cfixpoint(22, 22)
sig7 = cfixpoint(22, 22)
sig8 = cfixpoint(22, 22)
sig9 = cfixpoint(22, 22)
sig10 = cfixpoint(22, 22)

tn1 = ((np.sin(multiple *
               (2 * np.pi * np.arange(N)) / N)).astype(np.float64)) / 20
tn2 = ((np.sin(multiple *
               (2 * np.pi * np.arange(N, 2 * N)) / N)).astype(np.float64)) / 20
tn3 = ((np.sin(multiple * (2 * np.pi * np.arange(2 * N, 3 * N)) / N)).astype(
Ejemplo n.º 10
0
def make_fix_twiddle(N, bits, fraction, method="ROUND"):
    twids = cfixpoint(bits, fraction, method=method)
    twids.from_complex(np.exp(-2 * np.arange(N // 2) * np.pi * 1j / N))
    return twids
Ejemplo n.º 11
0
    def run(self, DATA, cont=False):

        if (DATA is not None):  #if a data vector has been parsed
            if (self.bits_in != DATA.bits):
                raise ValueError("Input data must match precision specified" +
                                 "for input data with bits_in")
            self.inputdata = DATA
        elif (self.inputdata is None):  #if no data was specified at all
            raise ValueError("No input data for PFB specified.")

        size = self.inputdata.data.shape[
            0]  #get length of data stream which should be multiple of N
        data_iter = size // self.N  #how many cycles of commutator

        X = cfixpoint(self.bits_fft,
                      self.frac_fft,
                      unsigned=self.unsigned,
                      method=self.fftmethod)

        if (self.staged):  #if all stages need be stored
            X.from_complex(
                np.empty((self.N, data_iter, int(np.log2(self.N)) + 2),
                         dtype=np.complex64)
            )  #will be tapsize x datalen/point x fft stages +2
            #(input and re-ordererd output)
            for i in range(
                    0, data_iter
            ):  #for each data_iter, populate all firs, and run FFT once
                if (i == 0):
                    X[:, i, :] = iterffft_natural_DIT(
                        self._FIR(self.inputdata[0:self.N]), self.twids,
                        self.shiftreg.copy(), self.bits_fft, self.frac_fft,
                        self.twidfrac, self.staged)
                else:
                    X[:, i, :] = iterffft_natural_DIT(
                        self._FIR(self.inputdata[i * self.N:i * self.N +
                                                 self.N]), self.twids,
                        self.shiftreg.copy(), self.bits_fft, self.frac_fft,
                        self.twidfrac, self.staged)

        else:  #if stages don't need to be stored
            X.from_complex(np.empty(
                (self.N, data_iter),
                dtype=np.complex64))  #will be tapsize x datalen/point
            for i in range(
                    0, data_iter
            ):  #for each stage, populate all firs, and run FFT once
                if (i == 0):
                    X[:, i] = iterffft_natural_DIT(
                        self._FIR(self.inputdata[0:self.N]), self.twids,
                        self.shiftreg.copy(), self.bits_fft, self.frac_fft,
                        self.twidfrac, self.staged)

                else:
                    X[:, i] = iterffft_natural_DIT(
                        self._FIR(self.inputdata[i * self.N:i * self.N +
                                                 self.N]), self.twids,
                        self.shiftreg.copy(), self.bits_fft, self.frac_fft,
                        self.twidfrac, self.staged)
        """Requantise if bitsout<bitsfft"""
        if (self.bits_out < self.bits_fft):
            X >> (self.bits_fft - self.bits_out)
            X.bits = self.bits_out
            X.fraction = self.frac_out
            X.normalise()
#
        """Decide on how to manipulate and display output data"""
        if (self.dual and not self.staged):  #If dual processing but not staged
            self._split(X)
            self.G_k_pow = self._pow(self.G_k)
            self.H_k_pow = self._pow(self.H_k)

        elif (not self.dual
              and self.staged):  #If single pol processing and staged
            self.X_k_stgd = X
            self.X_k_pow = self._pow(X[:, :, -1])
            self.X_k = X[:, :, -1]

        elif (self.dual and self.staged):  #If dual pol and staged
            self.X_k_stgd = X
            self.split(X[:, :, -1])
            self.G_k_pow = self._pow(self.G_k)
            self.H_k_pow = self._pow(self.H_k)

        else:  #If single pol and no staging
            self.X_k = X
            self.X_k_pow = self._pow(X)
Ejemplo n.º 12
0
    def __init__(self,
                 N,
                 taps,
                 bits_in,
                 frac_in,
                 bits_fft,
                 frac_fft,
                 bits_out,
                 frac_out,
                 twidbits,
                 twidfrac,
                 swreg,
                 bitsofacc=32,
                 fracofacc=31,
                 unsigned=False,
                 chan_acc=False,
                 datasrc=None,
                 w='hann',
                 firmethod="ROUND",
                 fftmethod="ROUND",
                 dual=False,
                 fwidth=1,
                 staged=False):
        """Populate PFB object properties"""
        self.N = N  #how many points
        self.chan_acc = chan_acc  #if summing outputs
        self.dual = dual  #whether you're processing dual polarisations
        self.taps = taps  #how many taps
        self.bitsofacc = bitsofacc  #how many bits to grow to in integration
        self.fracofacc = fracofacc
        self.bits_in = bits_in  #input data bitlength
        self.frac_in = frac_in
        self.bits_fft = bits_fft  #fft data bitlength
        self.frac_fft = frac_fft
        self.bits_out = bits_out  #what bitlength out you want
        self.frac_out = frac_out
        self.fwidth = fwidth  #normalising factor for fir window
        if (type(swreg) == int):  #if integer is parsed rather than list
            self.shiftreg = [int(x) for x in bin(swreg)[2:]]
            if (len(self.shiftreg) < int(np.log2(N))):
                for i in range(int(np.log2(N)) - len(self.shiftreg)):
                    self.shiftreg.insert(0, 0)
        elif (type(swreg) == list
              and type(swreg[0]) == int):  #if list of integers is parsed
            self.shiftreg = swreg
        else:
            raise ValueError(
                'Shiftregister must be type int or binary list of ints')

        self.unsigned = unsigned  #only used if data parsed in is in a file
        self.staged = staged  #whether to record fft stages
        self.twidbits = twidbits  #how many bits to give twiddle factors
        self.twidfrac = twidfrac
        self.firmethod = firmethod  #rounding scheme in firs
        self.fftmethod = fftmethod  #rounding scheme in fft

        #Define variables to be used:
        self.reg_real = fixpoint(self.bits_in,
                                 self.frac_in,
                                 unsigned=self.unsigned,
                                 method=self.firmethod)
        self.reg_real.from_float(np.zeros([
            N, taps
        ], dtype=np.int64))  #our fir register size filled with zeros orignally
        self.reg_imag = self.reg_real.copy()

        if (datasrc is not None
                and type(datasrc) == str):  #if input data file is specified
            self.inputdata = cfixpoint(self.bits_in,
                                       self.frac_in,
                                       unsigned=self.unsigned,
                                       method=self.firmethod)
            self.inputdatadir = datasrc
            self.outputdatadir = datasrc[:-4] + "out.npy"
            self.inputdata.from_complex(np.load(datasrc, mmap_mode='r'))
        else:
            self.inputdatadir = None

        #the window coefficients for the fir filter
        self.window = fixpoint(self.bits_fft,
                               self.frac_fft,
                               unsigned=self.unsigned,
                               method=self.firmethod)
        tmpcoeff, self.firsc = coeff_gen(self.N, self.taps, w, self.fwidth)
        self.window.from_float(tmpcoeff)

        #the twiddle factors for the natural input fft
        self.twids = make_fix_twiddle(self.N,
                                      self.twidbits,
                                      twidfrac,
                                      method=self.fftmethod)
        self.twids = bitrevfixarray(self.twids, self.twids.data.size)
Ejemplo n.º 13
0
#plt.plot(casfftres)
#plt.show()
#
#fxdmax = np.max(fxdfftres)
#casmax = np.max(casfftres)
#fltmax = np.max(fltfftres)
#print('fxdloc ',np.where(fxdfftres>fxdmax-0.001),' casloc ',np.where(casfftres>casmax-0.001), ' fltloc ',
#      np.where(fltfftres>fltmax-0.001))
"""FIR plot comparisons"""
firinputdata = spio.loadmat('firinputdata_ns.mat',
                            squeeze_me=True)['inputdata']
firoutputdata = spio.loadmat('firoutputdata_ns.mat',
                             squeeze_me=True)['outputdata']
pfbflt = FloatPFB(2**13, 8)
pfbflt.run(firinputdata)
datfirfxd = cfixpoint(17, 17)
datfirfxd.from_complex(firinputdata)
pfbfxd = FixPFB(2**13, 8, 17, 17, 17, 17, 8191, 17, chan_acc=False, w='hann')
pfbfxd.run(datfirfxd)
firoutflt = np.sum(pfbflt.reg * pfbflt.window, axis=1) / (2**pfbflt.firsc)
plt.plot(np.abs(firoutflt))
plt.show()

X_real = pfbfxd.reg_real * pfbfxd.window
X_imag = pfbfxd.reg_imag * pfbfxd.window
prodgrth = X_real.bits - pfbfxd.bits_fft - 1
X = cfixpoint(real=X_real.sum(axis=1), imag=X_imag.sum(axis=1))
X >> prodgrth + pfbfxd.firsc
X.bits = pfbfxd.bits_fft
X.fraction = pfbfxd.bits_fft
X.normalise()