def run(self, cutoff, numsel, metric): ''' Runs prediction tasks using internally defined methods Most of these methods can be found at the stats folder ''' # Load scaler and variable mask and preprocess the data success, result = self.preprocess(self.X) if not success: self.conveyor.setError(result) return self.X = result # instances space object space = Space(self.param, self.conveyor) # builds space from idata results LOG.info('Starting space searching') success, search_results = space.search(cutoff, numsel, metric) if not success: self.conveyor.setError(search_results) return self.conveyor.addVal(search_results, 'search_results', 'Search results', 'result', 'objs', 'Collection of similar compounds', 'main') LOG.info('Space search finished successfully') return
def run (self): ''' Builds a chemical space ''' # pre-process data success, message = self.preprocess() if not success: self.conveyor.setError(message) return # instances space object space = Space(self.param, self.conveyor) # builds space from idata results LOG.debug('Starting space building') success, space_building_results = space.build() if not success: LOG.error('space_building_results') self.conveyor.setError(space_building_results) return self.conveyor.addVal( space_building_results, 'space_build_info', 'space build info', 'method', 'single', 'Information about the building of the chemical space') # save model try: space.save_space() except Exception as e: LOG.error(f'Error saving space with exception {e}') self.conveyor.setError(f'Error saving space with exception {e}') return LOG.info('Space building finished successfully') return
def run(self, cutoff, numsel, metric): ''' Runs prediction tasks using internally defined methods Most of these methods can be found at the stats folder ''' if self.param.getVal('input_type') != "smarts": # Load scaler and variable mask and preprocess the data success, result = self.preprocess(self.X) if not success: self.conveyor.setError(result) return self.X = result # instances space object space = Space(self.param, self.conveyor) # check metric if metric is None: metric = space.defaultMetric # builds space from idata results LOG.info('Starting space searching') success, search_results = space.search(cutoff, numsel, metric) if not success: self.conveyor.setError(search_results) return self.conveyor.addVal(space.metric, 'metric', 'metric', 'method', 'single', 'Final metric used in the search') self.conveyor.addVal(search_results, 'search_results', 'Search results', 'result', 'objs', 'Collection of similar compounds', 'main') LOG.info('Space search finished successfully') return