Ejemplo n.º 1
0
def train_breast_cancer(config):
    params = LGBMEstimator(**config).params
    X_train = ray.get(X_train_ref)
    train_set = lgb.Dataset(X_train, label=y_train)
    gbm = lgb.train(params, train_set)
    preds = gbm.predict(X_test)
    pred_labels = np.rint(preds)
    tune.report(mean_accuracy=accuracy_score(y_test, pred_labels), done=True)
Ejemplo n.º 2
0
def evaluate_config(config):
    """evaluate a hyperparameter configuration"""
    # we uss a toy example with 2 hyperparameters
    metric = (round(config["x"]) - 85000)**2 - config["x"] / config["y"]
    # usually the evaluation takes an non-neglible cost
    # and the cost could be related to certain hyperparameters
    # in this example, we assume it's proportional to x
    time.sleep(config["x"] / 100000)
    # use tune.report to report the metric to optimize
    tune.report(metric=metric)
Ejemplo n.º 3
0
def simple_obj(config, resource=10000):
    config_value_vector = np.array([config["x"], config["y"], config["z"]])
    score_sequence = []
    for i in range(resource):
        a = rand_vector_unit_sphere(3)
        a[2] = abs(a[2])
        point_projection = np.dot(config_value_vector, a)
        score_sequence.append(point_projection)
    score_avg = np.mean(np.array(score_sequence))
    score_std = np.std(np.array(score_sequence))
    score_lb = score_avg - 1.96 * score_std / np.sqrt(resource)
    tune.report(samplesize=resource, sphere_projection=score_lb)
Ejemplo n.º 4
0
def obj_w_intermediate_report(resource, config):
    config_value_vector = np.array([config["x"], config["y"], config["z"]])
    score_sequence = []
    for i in range(resource):
        a = rand_vector_unit_sphere(3)
        a[2] = abs(a[2])
        point_projection = np.dot(config_value_vector, a)
        score_sequence.append(point_projection)
        if (i + 1) % 100 == 0:
            score_avg = np.mean(np.array(score_sequence))
            score_std = np.std(np.array(score_sequence))
            score_lb = score_avg - 1.96 * score_std / np.sqrt(i + 1)
            tune.report(samplesize=i + 1, sphere_projection=score_lb)
Ejemplo n.º 5
0
 def cost(param):
     tune.report(loss=(param["height"] - 14) ** 2 - abs(param["width"] - 3))
Ejemplo n.º 6
0
 def simple_func(config):
     tune.report(metric=(config["cost_related"]["a"] - 4)**2 *
                 (config["b"] - 0.7)**2)
Ejemplo n.º 7
0
 def simple_func(config):
     obj = (config["cost_related"]["a"] - 4)**2 \
         + (config["b"] - config["cost_related"]["a"])**2
     tune.report(obj=obj)
     tune.report(obj=obj, ab=config["cost_related"]["a"] * config["b"])