Ejemplo n.º 1
0
def test_lammps(otf_object, structure):
    atom_types = [1, 2]
    atom_masses = [108, 127]
    atom_species = [1, 2] * 27

    # create data file
    lammps_location = 'AgI_Molten_15.txt'
    data_file_name = 'tmp.data'
    data_text = lammps_calculator.lammps_dat(structure, atom_types,
                                             atom_masses, atom_species)
    lammps_calculator.write_text(data_file_name, data_text)

    # create lammps input
    style_string = 'mgpf' # use mgpf for the new lammps executable pair_style, 
                          # because mgp is the energy version 
    coeff_string = '* * {} Ag I yes yes'.format(lammps_location)
    lammps_executable = '$lmp'
    dump_file_name = 'tmp.dump'
    input_file_name = 'tmp.in'
    output_file_name = 'tmp.out'
    input_text = \
        lammps_calculator.generic_lammps_input(data_file_name, style_string,
                                               coeff_string, dump_file_name)
    lammps_calculator.write_text(input_file_name, input_text)

    lammps_calculator.run_lammps(lammps_executable, input_file_name,
                                 output_file_name)

    lammps_forces = lammps_calculator.lammps_parser(dump_file_name)

    # check that lammps agrees with gp to within 1 meV/A
    forces = otf_object.force_list[-1]
    assert(np.abs(lammps_forces[0, 1] - forces[0, 1]) < 1e-3)

    os.system('rm tmp.in tmp.out tmp.dump tmp.data'
              ' log.lammps')
    os.system('rm '+lammps_location)
    os.system('rm grid3*.npy')
    os.system('rm -r kv3')
Ejemplo n.º 2
0
# create test structure
species = otf_object.gp_species_list[-1]
positions = otf_object.position_list[-1]
forces = otf_object.force_list[-1]
otf_cell = otf_object.header['cell']
structure = struc.Structure(otf_cell, species, positions)

atom_types = [1, 2]
atom_masses = [108, 127]
atom_species = [1, 2] * 27

# create data file
data_file_name = 'tmp.data'
data_text = lammps_calculator.lammps_dat(structure, atom_types, atom_masses,
                                         atom_species)
lammps_calculator.write_text(data_file_name, data_text)

# create lammps input
style_string = 'mgp'
coeff_string = '* * {} Ag I yes yes'.format(lammps_location)
lammps_executable = '$lmp'
dump_file_name = 'tmp.dump'
input_file_name = 'tmp.in'
output_file_name = 'tmp.out'
input_text = \
    lammps_calculator.generic_lammps_input(data_file_name, style_string,
                                           coeff_string, dump_file_name)
lammps_calculator.write_text(input_file_name, input_text)

lammps_calculator.run_lammps(lammps_executable, input_file_name,
                             output_file_name)
Ejemplo n.º 3
0
def test_lmp_predict(all_gp, all_mgp, bodies, multihyps):
    """
    test the lammps implementation
    """

    for f in os.listdir("./"):
        if f in [
                f'tmp{bodies}{multihyps}in', f'tmp{bodies}{multihyps}out',
                f'tmp{bodies}{multihyps}dump', f'tmp{bodies}{multihyps}data',
                'log.lammps'
        ]:
            os.remove(f)
    clean()

    mgp_model = all_mgp[f'{bodies}{multihyps}']
    gp_model = all_gp[f'{bodies}{multihyps}']
    lammps_location = mgp_model.lmp_file_name

    # lmp file is automatically written now every time MGP is constructed
    mgp_model.write_lmp_file(lammps_location)

    # create test structure
    cell = np.eye(3)
    nenv = 10
    unique_species = gp_model.training_data[0].species
    cutoffs = gp_model.cutoffs
    struc_test, f = get_random_structure(cell, unique_species, nenv)
    atom_num = 1
    test_envi = env.AtomicEnvironment(struc_test, atom_num, cutoffs)
    atom_types = [1, 2]
    atom_masses = [108, 127]
    atom_species = struc_test.coded_species

    # create data file
    data_file_name = f'tmp{bodies}{multihyps}.data'
    data_text = lammps_calculator.lammps_dat(struc_test, atom_types,
                                             atom_masses, atom_species)
    lammps_calculator.write_text(data_file_name, data_text)

    # create lammps input
    by = 'no'
    ty = 'no'
    if '2' in bodies:
        by = 'yes'
    if '3' in bodies:
        ty = 'yes'
    style_string = 'mgp'
    coeff_string = f'* * {lammps_location} H He {by} {ty}'
    lammps_executable = os.environ.get('lmp')
    dump_file_name = f'tmp{bodies}{multihyps}.dump'
    input_file_name = f'tmp{bodies}{multihyps}.in'
    output_file_name = f'tmp{bodies}{multihyps}.out'
    input_text = \
        lammps_calculator.generic_lammps_input(data_file_name, style_string,
                                               coeff_string, dump_file_name,
                                               newton=True)
    lammps_calculator.write_text(input_file_name, input_text)

    lammps_calculator.run_lammps(lammps_executable, input_file_name,
                                 output_file_name)

    lammps_forces = lammps_calculator.lammps_parser(dump_file_name)
    mgp_forces = mgp_model.predict(test_envi, mean_only=True)

    # check that lammps agrees with gp to within 1 meV/A
    for i in range(3):
        assert (np.abs(lammps_forces[atom_num, i] - mgp_forces[0][i]) < 1e-3)

    for f in os.listdir("./"):
        if f in [
                f'tmp{bodies}{multihyps}in', f'tmp{bodies}{multihyps}out',
                f'tmp{bodies}{multihyps}dump', f'tmp{bodies}{multihyps}data',
                'log.lammps', lammps_location
        ]:
            os.remove(f)
    clean()
Ejemplo n.º 4
0
def test_parse_header():
    # -------------------------------------------------------------------------
    #                  reconstruct gp model from otf snippet
    # -------------------------------------------------------------------------

    file_name = 'test_files/AgI_snippet.out'
    hyp_no = 2

    # parse otf output
    otf_object = otf_parser.OtfAnalysis(file_name)
    otf_cell = otf_object.header['cell']

    # reconstruct gp model
    kernel = mc_simple.two_plus_three_body_mc
    kernel_grad = mc_simple.two_plus_three_body_mc_grad
    gp_model = otf_object.make_gp(kernel=kernel,
                                  kernel_grad=kernel_grad,
                                  hyp_no=hyp_no)
    gp_model.par = True
    gp_model.hyp_labels = ['sig2', 'ls2', 'sig3', 'ls3', 'noise']

    # -------------------------------------------------------------------------
    #                          check gp reconstruction
    # -------------------------------------------------------------------------

    # create test structure
    species = np.array([47, 53] * 27)
    positions = otf_object.position_list[-1]
    forces = otf_object.force_list[-1]
    structure = struc.Structure(otf_cell, species, positions)
    atom = 0
    environ = env.AtomicEnvironment(structure, atom, gp_model.cutoffs)
    force_comp = 2
    pred, _ = gp_model.predict(environ, force_comp)

    assert (np.isclose(pred, forces[0][1]))

    # -------------------------------------------------------------------------
    #                              map the potential
    # -------------------------------------------------------------------------

    file_name = 'AgI.gp'
    grid_num_2 = 64
    grid_num_3 = 15
    lower_cut = 2.
    two_cut = 7.
    three_cut = 5.
    lammps_location = 'AgI_Molten_15.txt'

    # set struc params. cell and masses arbitrary?
    mapped_cell = np.eye(3) * 100
    struc_params = {
        'species': [47, 53],
        'cube_lat': mapped_cell,
        'mass_dict': {
            '0': 27,
            '1': 16
        }
    }

    # grid parameters
    grid_params = {
        'bounds_2': [[lower_cut], [two_cut]],
        'bounds_3': [[lower_cut, lower_cut, 0], [three_cut, three_cut, np.pi]],
        'grid_num_2': grid_num_2,
        'grid_num_3': [grid_num_3, grid_num_3, grid_num_3],
        'svd_rank_2': 64,
        'svd_rank_3': 90,
        'bodies': [2, 3],
        'load_grid': None,
        'update': True
    }

    mgp_model = MappedGaussianProcess(gp_model,
                                      grid_params,
                                      struc_params,
                                      mean_only=True,
                                      lmp_file_name=lammps_location)

    # -------------------------------------------------------------------------
    #                          test the mapped potential
    # -------------------------------------------------------------------------

    gp_pred_x = gp_model.predict(environ, 1)
    mgp_pred = mgp_model.predict(environ, mean_only=True)

    # check mgp is within 1 meV/A of the gp
    assert (np.abs(mgp_pred[0][0] - gp_pred_x[0]) < 1e-3)

    # -------------------------------------------------------------------------
    #                           check lammps potential
    # -------------------------------------------------------------------------

    # mgp_model.write_lmp_file(lammps_location)
    # lmp file is automatically written now every time MGP is constructed

    # create test structure
    species = otf_object.gp_species_list[-1]
    positions = otf_object.position_list[-1]
    forces = otf_object.force_list[-1]
    structure = struc.Structure(otf_cell, species, positions)

    atom_types = [1, 2]
    atom_masses = [108, 127]
    atom_species = [1, 2] * 27

    # create data file
    data_file_name = 'tmp.data'
    data_text = lammps_calculator.lammps_dat(structure, atom_types,
                                             atom_masses, atom_species)
    lammps_calculator.write_text(data_file_name, data_text)

    # create lammps input
    style_string = 'mgp'  #TODO: change the name of lammps
    coeff_string = '* * {} 47 53 yes yes'.format(lammps_location)
    lammps_executable = '$lmp'
    dump_file_name = 'tmp.dump'
    input_file_name = 'tmp.in'
    output_file_name = 'tmp.out'
    input_text = \
        lammps_calculator.generic_lammps_input(data_file_name, style_string,
                                               coeff_string, dump_file_name)
    lammps_calculator.write_text(input_file_name, input_text)

    lammps_calculator.run_lammps(lammps_executable, input_file_name,
                                 output_file_name)

    lammps_forces = lammps_calculator.lammps_parser(dump_file_name)

    # check that lammps agrees with gp to within 1 meV/A
    assert (np.abs(lammps_forces[0, 1] - forces[0, 1]) < 1e-3)

    os.system('rm tmp.in tmp.out tmp.dump tmp.data AgI_Molten_15.txt'
              ' log.lammps')
    os.system('rm grid3*.npy')
    os.system('rm -r kv3')
Ejemplo n.º 5
0
def test_lammps():
    sgp_py.write_mapping_coefficients("beta.txt", "A", 0)
    new_kern = sgp_py.write_varmap_coefficients("beta_var.txt", "B", 0) # here the new kernel needs to be returned, otherwise the kernel won't be found in the current module

    assert sgp_py.sparse_gp.sparse_indices[0] == sgp_py.sgp_var.sparse_indices[0], \
            "the sparse_gp and sgp_var don't have the same training data"

    for s in range(len(atom_types)):
        org_desc = sgp_py.sparse_gp.sparse_descriptors[0].descriptors[s]
        new_desc = sgp_py.sgp_var.sparse_descriptors[0].descriptors[s]
        if not np.allclose(org_desc, new_desc): # the atomic order might change
            assert np.allclose(org_desc.shape, new_desc.shape)
            for i in range(org_desc.shape[0]):
                flag = False
                for j in range(new_desc.shape[0]): # seek in new_desc for matching of org_desc
                    if np.allclose(org_desc[i], new_desc[j]):
                        flag = True
                        break
                assert flag, "the sparse_gp and sgp_var don't have the same descriptors"
        

    # set up input and data files
    data_file_name = "tmp.data"
    lammps_location = "beta.txt"
    style_string = "flare"
    coeff_string = "* * {}".format(lammps_location)
    lammps_executable = os.environ.get("lmp")
    dump_file_name = "tmp.dump"
    input_file_name = "tmp.in"
    output_file_name = "tmp.out"
    newton = True

    # write data file
    data_text = lammps_calculator.lammps_dat(
        test_structure, atom_types, atom_masses, species
    )
    lammps_calculator.write_text(data_file_name, data_text)

    # write input file
    input_text = lammps_calculator.generic_lammps_input(
        data_file_name, style_string, coeff_string, dump_file_name, newton=newton,
        std_string="beta_var.txt", std_style="flare_pp",
    )
    lammps_calculator.write_text(input_file_name, input_text)

    # run lammps
    lammps_calculator.run_lammps(lammps_executable, input_file_name, output_file_name)

    # read output
    lmp_dump = read(dump_file_name, format="lammps-dump-text")
    lmp_forces = lmp_dump.get_forces()
#    lmp_var_1 = lmp_dump.get_array("c_std[1]")
#    lmp_var_2 = lmp_dump.get_array("c_std[2]")
#    lmp_var_3 = lmp_dump.get_array("c_std[3]")
#    lmp_var = np.hstack([lmp_var_1, lmp_var_2, lmp_var_3])
    lmp_std = lmp_dump.get_array("c_std")
    lmp_var = lmp_std ** 2
    print(lmp_var)

    # compare with sgp_py prediction
    assert len(sgp_py.training_data) > 0

    # Convert coded species to 0, 1, 2, etc.
    coded_species = []
    for spec in test_structure.coded_species:
        coded_species.append(species_map[spec])

    test_cpp_struc = Structure(
        test_structure.cell,
        coded_species,
        test_structure.positions,
        sgp_py.cutoff,
        sgp_py.descriptor_calculators,
    )

    print("GP predicting")
    sgp_py.sparse_gp.predict_DTC(test_cpp_struc)
    sgp_efs = test_cpp_struc.mean_efs
    sgp_forces = np.reshape(sgp_efs[1:len(sgp_efs)-6], (test_structure.nat, 3))
    assert np.allclose(lmp_forces, sgp_forces)
    print("GP forces match LMP forces")

    sgp_py.sgp_var.predict_DTC(test_cpp_struc)
    #sgp_var = np.reshape(test_cpp_struc_pow1.variance_efs[1:len(sgp_efs)-6], (test_structure.nat, 3))
    sgp_var = sgp_py.sgp_var.compute_cluster_uncertainties(test_cpp_struc)
#    sgp_var = test_cpp_struc.variance_efs[0]
    print(sgp_var)

    n_descriptors = np.shape(test_cpp_struc.descriptors[0].descriptors[0])[1]
    n_species = len(atom_types)
    desc_en = np.zeros((n_species, n_descriptors))
    py_var = 0.0
#    for s in range(n_species):
#        n_struc_s = test_cpp_struc_pow1.descriptors[0].n_clusters_by_type[s];
#        assert np.shape(test_cpp_struc_pow1.descriptors[0].descriptors[s])[0] == n_struc_s
#        for i in range(n_descriptors):
#            desc_en[s, i] = np.sum(test_cpp_struc_pow1.descriptors[0].descriptors[s][:, i] / test_cpp_struc_pow1.descriptors[0].descriptor_norms[s], axis=0)
#
    print("len(varmap_coeffs)", len(sgp_py.sgp_var.varmap_coeffs))
    beta_matrices = []
    for s1 in range(n_species):
    #    for s2 in range(n_species):
        beta_matr = np.reshape(sgp_py.sgp_var.varmap_coeffs[s1, :], (n_descriptors, n_descriptors))
        print(s1, s1, "max", np.max(np.abs(beta_matr)), beta_matr.shape)
        beta_matrices.append(beta_matr)
#        py_var += desc_en[s1, :].dot(desc_en[s1, :].dot(beta_matr))
#    print(py_var)

    struc_desc = test_cpp_struc.descriptors[0]
    n_descriptors = np.shape(struc_desc.descriptors[0])[1]
    n_species = len(atom_types)
#    desc = np.zeros((n_atoms, 3, n_species, n_descriptors))

    print("len(varmap_coeffs)", len(sgp_py.sgp_var.varmap_coeffs))
    py_var = np.zeros(n_atoms)
    for s in range(n_species):
        n_struc = struc_desc.n_clusters_by_type[s];
        beta_matr = beta_matrices[s]
        for j in range(n_struc):
            norm = struc_desc.descriptor_norms[s][j]
            n_neigh = struc_desc.neighbor_counts[s][j]
            c_neigh = struc_desc.cumulative_neighbor_counts[s][j]
            atom_index = struc_desc.atom_indices[s][j]
            print("atom", atom_index, "n_neigh", n_neigh)
            desc = struc_desc.descriptors[s][j]
            py_var[atom_index] = desc.dot(desc.dot(beta_matr)) / norm ** 2
            #py_var[atom_index] = desc.dot(desc) / norm ** 2 * sgp_py.sgp_var.kernels[0].sigma ** 2 
#            for k in range(n_neigh):
#                ind = c_neigh + k
#                neighbor_index = struc_desc.neighbor_indices[s][ind];
#
#                neighbor_coord = struc_desc.neighbor_coordinates[s][ind];
#                neigh_dist = np.sum((neighbor_coord - test_positions[atom_index]) ** 2) 
#                #print("neighbor", neighbor_index, "dist", neigh_dist)
#                for comp in range(3):
#                    f1 = struc_desc.descriptor_force_dervs[s][3 * ind + comp] / norm
#                    f2 = struc_desc.descriptors[s][j] * struc_desc.descriptor_force_dots[s][3 * ind + comp] / norm ** 3
#                    f3 = f1 - f2
#                    desc[atom_index, comp, s, :] += norm #f3
#                    desc[neighbor_index, comp, s, :] -= norm #f3
#
#
#    for i in range(n_atoms):
#        for comp in range(3):
#            for s1 in range(n_species):
#                for s2 in range(n_species):
#                    beta_matr = np.reshape(sgp_py.sgp_var.varmap_coeffs[s1 * n_species + s2, :], (n_descriptors, n_descriptors))
##                    print(s1, s2, "max", np.max(np.abs(beta_matr)))
#                    py_var[i, comp] += desc[i, comp, s1].dot(desc[i, comp, s2].dot(beta_matr))
##                    py_var[i, comp] += np.sum(desc[i, comp, s1]) #np.sum(beta_matr[:, comp]) #np.sum(desc[i, comp, s1])
    print(py_var)
Ejemplo n.º 6
0
def test_lmp_predict(all_gp, all_mgp, bodies, multihyps):
    """
    test the lammps implementation
    """

    pytest.skip()

    prefix = f'{bodies}{multihyps}'

    mgp_model = all_mgp[f'{bodies}{multihyps}']
    gp_model = all_gp[f'{bodies}{multihyps}']
    lammps_location = mgp_model.lmp_file_name

    # create test structure
    cell = 5 * np.eye(3)
    nenv = 10
    unique_species = gp_model.training_data[0].species
    cutoffs = gp_model.cutoffs
    struc_test, f = get_random_structure(cell, unique_species, nenv)
    atom_num = 1
    test_envi = env.AtomicEnvironment(struc_test,
                                      atom_num,
                                      cutoffs,
                                      cutoffs_mask=gp_model.hyps_mask)

    all_species = list(set(struc_test.coded_species))
    atom_types = list(np.arange(len(all_species)) + 1)
    atom_masses = [_Z_to_mass[spec] for spec in all_species]
    atom_species = [
        all_species.index(spec) + 1 for spec in struc_test.coded_species
    ]
    specie_symbol_list = " ".join(
        [_Z_to_element[spec] for spec in all_species])

    # create data file
    data_file_name = f'{prefix}.data'
    data_text = lammps_calculator.lammps_dat(struc_test, atom_types,
                                             atom_masses, atom_species)
    lammps_calculator.write_text(data_file_name, data_text)

    # create lammps input
    by = 'no'
    ty = 'no'
    if '2' in bodies:
        by = 'yes'
    if '3' in bodies:
        ty = 'yes'

    style_string = 'mgp'

    coeff_string = f'* * {lammps_location}.mgp {specie_symbol_list} {by} {ty}'
    std_string = f'{lammps_location}.var {specie_symbol_list} {by} {ty}'
    lammps_executable = os.environ.get('lmp')
    dump_file_name = f'{prefix}.dump'
    input_file_name = f'{prefix}.in'
    output_file_name = f'{prefix}.out'
    input_text = \
        lammps_calculator.generic_lammps_input(data_file_name, style_string,
                                               coeff_string, dump_file_name,
                                               newton=False, std_string=std_string)
    lammps_calculator.write_text(input_file_name, input_text)

    lammps_calculator.run_lammps(lammps_executable, input_file_name,
                                 output_file_name)

    pred_std = True
    lammps_forces, lammps_stds = lammps_calculator.lammps_parser(
        dump_file_name, std=pred_std)
    mgp_pred = mgp_model.predict(test_envi)

    # check that lammps agrees with gp to within 1 meV/A
    for i in range(3):
        print("isclose? diff:", lammps_forces[atom_num, i] - mgp_pred[0][i],
              "mgp value", mgp_pred[0][i])
        assert np.isclose(lammps_forces[atom_num, i],
                          mgp_pred[0][i],
                          rtol=1e-2)

    # check the lmp var
    mgp_std = np.sqrt(mgp_pred[1])
    print("isclose? diff:", lammps_stds[atom_num] - mgp_std, "mgp value",
          mgp_std)
    assert np.isclose(lammps_stds[atom_num], mgp_std, rtol=1e-2)

    clean(prefix=prefix)