Ejemplo n.º 1
0
def test_jit(tmpdir, jitter, args):
    path = os.path.join(tmpdir, "test.pt")

    model = ImageClassifier(2)
    model.eval()

    model = jitter(model, *args)

    torch.jit.save(model, path)
    model = torch.jit.load(path)

    out = model(torch.rand(1, 3, 32, 32))
    assert isinstance(out, torch.Tensor)
    assert out.shape == torch.Size([1, 2])
Ejemplo n.º 2
0
def test_multilabel(tmpdir):

    num_classes = 4
    ds = DummyMultiLabelDataset(num_classes)
    model = ImageClassifier(num_classes, multi_label=True, serializer=Probabilities(multi_label=True))
    train_dl = torch.utils.data.DataLoader(ds, batch_size=2)
    trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
    trainer.finetune(model, train_dl, strategy="freeze_unfreeze")
    image, label = ds[0][DefaultDataKeys.INPUT], ds[0][DefaultDataKeys.TARGET]
    predictions = model.predict([{DefaultDataKeys.INPUT: image}])
    assert (torch.tensor(predictions) > 1).sum() == 0
    assert (torch.tensor(predictions) < 0).sum() == 0
    assert len(predictions[0]) == num_classes == len(label)
    assert len(torch.unique(label)) <= 2
def test_default_strategies(tmpdir):
    num_classes = 10
    ds = DummyDataset()
    model = ImageClassifier(num_classes, backbone="resnet50")

    trainer = Trainer(fast_dev_run=2)
    trainer.fit(model, train_dataloader=DataLoader(ds))
def test_wrongly_specified_training_strategies():
    with pytest.raises(KeyError, match="something is not in FlashRegistry"):
        ImageClassifier(
            backbone="resnet18",
            training_strategy="something",
            training_strategy_kwargs={"ways": 2, "shots": 4, "meta_batch_size": 10},
        )
Ejemplo n.º 5
0
def test_classification_fiftyone(tmpdir):
    tmpdir = Path(tmpdir)

    (tmpdir / "a").mkdir()
    (tmpdir / "b").mkdir()
    _rand_image().save(tmpdir / "a_1.png")
    _rand_image().save(tmpdir / "b_1.png")

    train_images = [
        str(tmpdir / "a_1.png"),
        str(tmpdir / "b_1.png"),
    ]

    train_dataset = fo.Dataset.from_dir(str(tmpdir),
                                        dataset_type=fo.types.ImageDirectory)
    s1 = train_dataset[train_images[0]]
    s2 = train_dataset[train_images[1]]
    s1["test"] = fo.Classification(label="1")
    s2["test"] = fo.Classification(label="2")
    s1.save()
    s2.save()

    data = ImageClassificationData.from_fiftyone(
        train_dataset=train_dataset,
        label_field="test",
        batch_size=2,
        num_workers=0,
        image_size=(64, 64),
    )

    model = ImageClassifier(num_classes=2, backbone="resnet18")
    trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
    trainer.finetune(model, datamodule=data, strategy="freeze")
def test_no_validation_loop(simple_datamodule):
    active_learning_dm = ActiveLearningDataModule(
        simple_datamodule,
        initial_num_labels=2,
        query_size=100,
        val_split=0.0,
    )
    assert active_learning_dm.val_dataloader is None
    head = nn.Sequential(
        nn.Dropout(p=0.1),
        nn.Linear(512, active_learning_dm.num_classes),
    )

    model = ImageClassifier(backbone="resnet18",
                            head=head,
                            num_classes=active_learning_dm.num_classes)
    trainer = flash.Trainer(max_epochs=3)
    active_learning_loop = ActiveLearningLoop(label_epoch_frequency=1,
                                              inference_iteration=3)
    active_learning_loop.connect(trainer.fit_loop)
    trainer.fit_loop = active_learning_loop

    # Check that we can finetune without val_set
    trainer.finetune(model,
                     datamodule=active_learning_dm,
                     strategy="no_freeze")
def _test_learn2learning_training_strategies(gpus, accelerator, training_strategy, tmpdir):
    train_dir = Path(tmpdir / "train")
    train_dir.mkdir()

    (train_dir / "a").mkdir()
    pa_1 = train_dir / "a" / "1.png"
    pa_2 = train_dir / "a" / "2.png"
    pb_1 = train_dir / "b" / "1.png"
    pb_2 = train_dir / "b" / "2.png"
    image_size = (96, 96)
    _rand_image(image_size).save(pa_1)
    _rand_image(image_size).save(pa_2)

    (train_dir / "b").mkdir()
    _rand_image(image_size).save(pb_1)
    _rand_image(image_size).save(pb_2)

    n = 5

    dm = ImageClassificationData.from_files(
        train_files=[str(pa_1)] * n + [str(pa_2)] * n + [str(pb_1)] * n + [str(pb_2)] * n,
        train_targets=[0] * n + [1] * n + [2] * n + [3] * n,
        batch_size=1,
        num_workers=0,
        transform_kwargs=dict(image_size=image_size),
    )

    model = ImageClassifier(
        backbone="resnet18",
        training_strategy=training_strategy,
        training_strategy_kwargs={"ways": dm.num_classes, "shots": 4, "meta_batch_size": 4},
    )

    trainer = Trainer(fast_dev_run=2, gpus=gpus, accelerator=accelerator)
    trainer.fit(model, datamodule=dm)
Ejemplo n.º 8
0
def test_available_backbones():
    backbones = ImageClassifier.available_backbones()
    assert "resnet152" in backbones

    class Foo(ImageClassifier):
        backbones = None

    assert Foo.available_backbones() == {}
Ejemplo n.º 9
0
def test_classification_task_predict_folder_path(tmpdir):
    train_dir = Path(tmpdir / "train")
    train_dir.mkdir()

    def _rand_image():
        return Image.fromarray(
            np.random.randint(0, 255, (256, 256, 3), dtype="uint8"))

    _rand_image().save(train_dir / "1.png")
    _rand_image().save(train_dir / "2.png")

    datamodule = ImageClassificationData.from_folders(predict_folder=train_dir)

    task = ImageClassifier(num_classes=10)
    predictions = task.predict(str(train_dir),
                               data_pipeline=datamodule.data_pipeline)
    assert len(predictions) == 2
Ejemplo n.º 10
0
def test_classification(tmpdir):
    tmpdir = Path(tmpdir)

    (tmpdir / "a").mkdir()
    (tmpdir / "b").mkdir()

    image_a = str(tmpdir / "a" / "a_1.png")
    image_b = str(tmpdir / "b" / "b_1.png")

    _rand_image().save(image_a)
    _rand_image().save(image_b)

    data = ImageClassificationData.from_files(
        train_files=[image_a, image_b],
        train_targets=[0, 1],
        num_workers=0,
        batch_size=2,
        image_size=(64, 64),
    )
    model = ImageClassifier(num_classes=2, backbone="resnet18")
    trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
    trainer.finetune(model, datamodule=data, strategy="freeze")
Ejemplo n.º 11
0
 def run(self, train_folder):
     # Create a datamodule from the given dataset
     datamodule = ImageClassificationData.from_folders(
         train_folder=train_folder,
         batch_size=1,
         val_split=0.5,
     )
     # Create an image classfier task with the given backbone
     model = ImageClassifier(datamodule.num_classes, backbone=self.backbone)
     # Start a Lightning trainer, with 1 training batch and 4 validation batches
     trainer = flash.Trainer(
         max_epochs=self.max_epochs,
         limit_train_batches=1,
         limit_val_batches=4,
         callbacks=[ModelCheckpoint(monitor="val_cross_entropy")],
     )
     # Train the model
     trainer.fit(model, datamodule=datamodule)
     # Save the model path
     self.best_model_path = trainer.checkpoint_callback.best_model_path
     # Save the model score
     self.best_model_score = trainer.checkpoint_callback.best_model_score.item(
     )
Ejemplo n.º 12
0
def get_model(dm):
    loss_fn = nn.CrossEntropyLoss()
    head = nn.Sequential(
        nn.Linear(512, 512),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(512, 512),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(512, dm.num_classes),
    )
    LR = 0.001
    model = ImageClassifier(
        num_classes=dm.num_classes,
        head=head,
        backbone="vgg16",
        pretrained=True,
        loss_fn=loss_fn,
        optimizer=partial(torch.optim.SGD, momentum=0.9, weight_decay=5e-4),
        learning_rate=LR,
        serializer=Logits(
        ),  # Note the serializer to Logits to be able to estimate uncertainty.
    )
    return model
Ejemplo n.º 13
0
def test_available_backbones_raises():
    with pytest.raises(ModuleNotFoundError,
                       match="Required dependencies not available."):
        _ = ImageClassifier.available_backbones()
Ejemplo n.º 14
0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from flash import Trainer
from flash.core.classification import Probabilities
from flash.core.data.utils import download_data
from flash.image import ImageClassificationData, ImageClassifier

# 1. Download the data
download_data("https://pl-flash-data.s3.amazonaws.com/hymenoptera_data.zip",
              "data/")

# 2. Load the model from a checkpoint
model = ImageClassifier.load_from_checkpoint(
    "https://flash-weights.s3.amazonaws.com/image_classification_model.pt")

# 3a. Predict what's on a few images! ants or bees?

model.serializer = Probabilities()
predictions = model.predict([
    "data/hymenoptera_data/val/bees/65038344_52a45d090d.jpg",
    "data/hymenoptera_data/val/bees/590318879_68cf112861.jpg",
    "data/hymenoptera_data/val/ants/540543309_ddbb193ee5.jpg",
])
print(predictions)

# 3b. Or generate predictions with a whole folder!
datamodule = ImageClassificationData.from_folders(
    predict_folder="data/hymenoptera_data/predict/")
Ejemplo n.º 15
0
def test_unfreeze():
    model = ImageClassifier(2)
    model.unfreeze()
    for p in model.backbone.parameters():
        assert p.requires_grad is True
Ejemplo n.º 16
0
def test_non_existent_backbone():
    with pytest.raises(KeyError):
        ImageClassifier(2, "i am never going to implement this lol")
Ejemplo n.º 17
0
def test_init_train(tmpdir, backbone, metrics):
    model = ImageClassifier(10, backbone=backbone, metrics=metrics)
    train_dl = torch.utils.data.DataLoader(DummyDataset())
    trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
    trainer.finetune(model, train_dl, strategy="freeze_unfreeze")
Ejemplo n.º 18
0
def test_load_from_checkpoint_dependency_error():
    with pytest.raises(ModuleNotFoundError,
                       match=re.escape("'lightning-flash[image]'")):
        ImageClassifier.load_from_checkpoint("not_a_real_checkpoint.pt")
    train_data=train_dataset.x,
    train_targets=torch.from_numpy(train_dataset.y.astype(int)),
    val_data=val_dataset.x,
    val_targets=torch.from_numpy(val_dataset.y.astype(int)),
    transform=transform,
)

model = ImageClassifier(
    backbone="resnet18",
    training_strategy="prototypicalnetworks",
    training_strategy_kwargs={
        "epoch_length": 10 * 16,
        "meta_batch_size": 4,
        "num_tasks": 200,
        "test_num_tasks": 2000,
        "ways": datamodule.num_classes,
        "shots": 1,
        "test_ways": 5,
        "test_shots": 1,
        "test_queries": 15,
    },
    optimizer=torch.optim.Adam,
    learning_rate=0.001,
)

trainer = flash.Trainer(
    max_epochs=200,
    gpus=2,
    accelerator="ddp_shared",
    precision=16,
)
Ejemplo n.º 20
0
import flash
from flash.core.data.utils import download_data
from flash.image import ImageClassificationData, ImageClassifier

# 1. Create the DataModule
download_data("https://pl-flash-data.s3.amazonaws.com/hymenoptera_data.zip",
              "./data")

datamodule = ImageClassificationData.from_folders(
    train_folder="data/hymenoptera_data/train/",
    val_folder="data/hymenoptera_data/val/",
)

# 2. Build the task
model = ImageClassifier(backbone="resnet18",
                        num_classes=datamodule.num_classes)

# 3. Create the trainer and finetune the model
trainer = flash.Trainer(max_epochs=3, gpus=torch.cuda.device_count())
trainer.finetune(model, datamodule=datamodule, strategy="freeze")

# 4. Predict what's on a few images! ants or bees?
predictions = model.predict([
    "data/hymenoptera_data/val/bees/65038344_52a45d090d.jpg",
    "data/hymenoptera_data/val/bees/590318879_68cf112861.jpg",
    "data/hymenoptera_data/val/ants/540543309_ddbb193ee5.jpg",
])
print(predictions)

# 5. Save the model!
trainer.save_checkpoint("image_classification_model.pt")
test_dataset = fo.Dataset.from_dir(
    dataset_dir="data/hymenoptera_data/test/",
    dataset_type=fo.types.ImageClassificationDirectoryTree,
)

# 3 Load data into Flash
datamodule = ImageClassificationData.from_fiftyone(
    train_dataset=train_dataset,
    val_dataset=val_dataset,
    test_dataset=test_dataset,
    batch_size=4,
)

# 4 Fine tune model
model = ImageClassifier(
    backbone="resnet18",
    labels=datamodule.labels,
)
trainer = flash.Trainer(
    max_epochs=1,
    gpus=torch.cuda.device_count(),
    limit_train_batches=1,
    limit_val_batches=1,
)
trainer.finetune(
    model,
    datamodule=datamodule,
    strategy=("freeze_unfreeze", 1),
)
trainer.save_checkpoint("image_classification_model.pt")

# 5 Predict from checkpoint on data with ground truth
train_files, train_targets = load_data('train')
test_files, test_targets = load_data('test')

datamodule = ImageClassificationData.from_files(
    train_files=train_files,
    train_targets=train_targets,
    test_files=test_files,
    test_targets=test_targets,
    val_split=0.1,  # Use 10 % of the train dataset to generate validation one.
    image_size=(128, 128),
)

# 3. Build the model
model = ImageClassifier(
    backbone="resnet18",
    num_classes=len(genres),
    multi_label=True,
    metrics=F1(num_classes=len(genres)),
)

# 4. Create the trainer. Train on 2 gpus for 10 epochs.
trainer = flash.Trainer(max_epochs=10)

# 5. Train the model
trainer.finetune(model, datamodule=datamodule, strategy="freeze")

# 6. Predict what's on a few images!
# Serialize predictions as labels, low threshold to see more predictions.
model.serializer = Labels(genres, multi_label=True, threshold=0.25)

predictions = model.predict([
    "data/movie_posters/predict/tt0085318.jpg",
Ejemplo n.º 23
0
 def run(self, best_model_path: str):
     # Load the model from the model path
     model = ImageClassifier.load_from_checkpoint(best_model_path)
     model.serve(output="labels")
Ejemplo n.º 24
0

# 3.a Optional: Register a custom backbone
# This is useful to create new backbone and make them accessible from `ImageClassifier`
@ImageClassifier.backbones(name="resnet18")
def fn_resnet(pretrained: bool = True):
    model = torchvision.models.resnet18(pretrained)
    # remove the last two layers & turn it into a Sequential model
    backbone = nn.Sequential(*list(model.children())[:-2])
    num_features = model.fc.in_features
    # backbones need to return the num_features to build the head
    return backbone, num_features


# 3.b Optional: List available backbones
print(ImageClassifier.available_backbones())

# 4. Build the model
model = ImageClassifier(backbone="resnet18",
                        num_classes=datamodule.num_classes,
                        serializer=Labels())

# 5. Create the trainer
trainer = flash.Trainer(max_epochs=1,
                        limit_train_batches=1,
                        limit_val_batches=1)

# 6. Train the model
trainer.finetune(model,
                 datamodule=datamodule,
                 strategy=FreezeUnfreeze(unfreeze_epoch=1))
def test_active_learning_training(simple_datamodule, initial_num_labels,
                                  query_size):
    seed_everything(42)

    if initial_num_labels == 0:
        with pytest.warns(UserWarning,
                          match="No labels provided for the initial step"):
            active_learning_dm = ActiveLearningDataModule(
                simple_datamodule,
                initial_num_labels=initial_num_labels,
                query_size=query_size,
                val_split=0.5,
            )
    else:
        active_learning_dm = ActiveLearningDataModule(
            simple_datamodule,
            initial_num_labels=initial_num_labels,
            query_size=query_size,
            val_split=0.5,
        )

    head = nn.Sequential(
        nn.Dropout(p=0.1),
        nn.Linear(512, active_learning_dm.num_classes),
    )

    model = ImageClassifier(backbone="resnet18",
                            head=head,
                            num_classes=active_learning_dm.num_classes)
    trainer = flash.Trainer(max_epochs=3, num_sanity_val_steps=0)
    active_learning_loop = ActiveLearningLoop(label_epoch_frequency=1,
                                              inference_iteration=3)
    active_learning_loop.connect(trainer.fit_loop)
    trainer.fit_loop = active_learning_loop

    trainer.finetune(model,
                     datamodule=active_learning_dm,
                     strategy="no_freeze")
    # Check that all metrics are logged
    assert all(
        any(m in log_met
            for log_met in active_learning_loop.trainer.logged_metrics)
        for m in ("train", "val", "test"))

    # Check that the weights has changed for both module.
    classifier = active_learning_loop._lightning_module.adapter.parameters()
    mc_inference = active_learning_loop.inference_model.parent_module.parameters(
    )
    assert all(torch.equal(p1, p2) for p1, p2 in zip(classifier, mc_inference))

    if initial_num_labels == 0:
        assert len(active_learning_dm._dataset) == 15
    else:
        assert len(active_learning_dm._dataset) == 20
    assert active_learning_loop.progress.total.completed == 3
    labelled = active_learning_loop.state_dict(
    )["state_dict"]["datamodule_state_dict"]["labelled"]
    assert isinstance(labelled, np.ndarray)

    # Check that we iterate over the actual pool and that shuffle is disabled.
    assert len(active_learning_dm.predict_dataloader()) == math.ceil(
        (~labelled).sum() / simple_datamodule.batch_size)
    assert isinstance(active_learning_dm.predict_dataloader().sampler,
                      SequentialSampler)

    if initial_num_labels == 0:
        assert len(active_learning_dm.val_dataloader()) == 4
    else:
        # in the second scenario we have more labelled data!
        assert len(active_learning_dm.val_dataloader()) == 5
Ejemplo n.º 26
0
def test_serve():
    model = ImageClassifier(2)
    # TODO: Currently only servable once a preprocess has been attached
    model._preprocess = ImageClassificationPreprocess()
    model.eval()
    model.serve()
Ejemplo n.º 27
0
from flash.audio import AudioClassificationData
from flash.core.data.utils import download_data
from flash.core.finetuning import FreezeUnfreeze
from flash.image import ImageClassifier

# 1. Create the DataModule
download_data("https://pl-flash-data.s3.amazonaws.com/urban8k_images.zip", "./data")

datamodule = AudioClassificationData.from_folders(
    train_folder="data/urban8k_images/train",
    val_folder="data/urban8k_images/val",
    spectrogram_size=(64, 64),
)

# 2. Build the model.
model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes)

# 3. Create the trainer and finetune the model
trainer = flash.Trainer(max_epochs=3, gpus=torch.cuda.device_count())
trainer.finetune(model, datamodule=datamodule, strategy=FreezeUnfreeze(unfreeze_epoch=1))

# 4. Predict what's on few images! air_conditioner, children_playing, siren e.t.c
predictions = model.predict(
    [
        "data/urban8k_images/test/air_conditioner/13230-0-0-5.wav.jpg",
        "data/urban8k_images/test/children_playing/9223-2-0-15.wav.jpg",
        "data/urban8k_images/test/jackhammer/22883-7-10-0.wav.jpg",
    ]
)
print(predictions)
Ejemplo n.º 28
0
    return os.path.join(root, f"{file_id}.jpg")


datamodule = ImageClassificationData.from_csv(
    "Id",
    ["Action", "Romance", "Crime", "Thriller", "Adventure"],
    train_file="data/movie_posters/train/metadata.csv",
    train_resolver=resolver,
    val_file="data/movie_posters/val/metadata.csv",
    val_resolver=resolver,
    transform_kwargs={"image_size": (128, 128)},
    batch_size=1,
)

# 2. Build the task
model = ImageClassifier(backbone="resnet18", labels=datamodule.labels, multi_label=datamodule.multi_label)

# 3. Create the trainer and finetune the model
trainer = flash.Trainer(max_epochs=3, gpus=torch.cuda.device_count())
trainer.finetune(model, datamodule=datamodule, strategy="freeze")

# 4. Predict the genre of a few movies!
datamodule = ImageClassificationData.from_files(
    predict_files=[
        "data/movie_posters/predict/tt0085318.jpg",
        "data/movie_posters/predict/tt0089461.jpg",
        "data/movie_posters/predict/tt0097179.jpg",
    ],
    batch_size=3,
)
predictions = trainer.predict(model, datamodule=datamodule, output="labels")
test_dataset = fo.Dataset.from_dir(
    dataset_dir="data/hymenoptera_data/test/",
    dataset_type=fo.types.ImageClassificationDirectoryTree,
)

# 3 Load FiftyOne datasets
datamodule = ImageClassificationData.from_fiftyone(
    train_dataset=train_dataset,
    val_dataset=val_dataset,
    test_dataset=test_dataset,
)

# 4 Fine tune a model
model = ImageClassifier(
    backbone="resnet18",
    num_classes=datamodule.num_classes,
    serializer=Labels(),
)
trainer = flash.Trainer(
    max_epochs=1,
    limit_train_batches=1,
    limit_val_batches=1,
)
trainer.finetune(
    model,
    datamodule=datamodule,
    strategy=FreezeUnfreeze(unfreeze_epoch=1),
)
trainer.save_checkpoint("image_classification_model.pt")

# 5 Predict from checkpoint on data with ground truth
Ejemplo n.º 30
0
# 1 Download data
download_data(
    "https://label-studio-testdata.s3.us-east-2.amazonaws.com/lightning-flash/data.zip"
)

# 2. Load export data
datamodule = ImageClassificationData.from_labelstudio(
    export_json="data/project.json",
    data_folder="data/upload/",
    val_split=0.2,
)

# 3. Fine tune a model
model = ImageClassifier(
    backbone="resnet18",
    num_classes=datamodule.num_classes,
)
trainer = flash.Trainer(max_epochs=3)

trainer.finetune(
    model,
    datamodule=datamodule,
    strategy=("freeze_unfreeze", 1),
)
trainer.save_checkpoint("image_classification_model.pt")

# 4. Predict from checkpoint
model = ImageClassifier.load_from_checkpoint("image_classification_model.pt")
model.output = LabelsOutput()

datamodule = ImageClassificationData.from_files(predict_files=[