Ejemplo n.º 1
0
def from_coco_128(
    val_split: float = 0.1,
    transform_kwargs: Optional[Dict[str, Any]] = None,
    batch_size: int = 1,
    **data_module_kwargs,
) -> ObjectDetectionData:
    """Downloads and loads the COCO 128 data set."""
    download_data("https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip", "data/")
    return ObjectDetectionData.from_coco(
        train_folder="data/coco128/images/train2017/",
        train_ann_file="data/coco128/annotations/instances_train2017.json",
        val_split=val_split,
        transform_kwargs=dict(image_size=(128, 128)) if transform_kwargs is None else transform_kwargs,
        batch_size=batch_size,
        **data_module_kwargs,
    )
Ejemplo n.º 2
0
def from_coco_128(
    val_split: float = 0.1,
    batch_size: int = 4,
    num_workers: int = 0,
    **preprocess_kwargs,
) -> ObjectDetectionData:
    """Downloads and loads the COCO 128 data set."""
    download_data(
        "https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip",
        "data/")
    return ObjectDetectionData.from_coco(
        train_folder="data/coco128/images/train2017/",
        train_ann_file="data/coco128/annotations/instances_train2017.json",
        val_split=val_split,
        batch_size=batch_size,
        num_workers=num_workers,
        **preprocess_kwargs,
    )
Ejemplo n.º 3
0
def train_with_hydra(cfg: DictConfig):

    # ----------
    # TRAINING REPRODUCIBILITY
    # -----------

    # print augmentation applied
    #print(instantiate(cfg.dataset.train_transform, _convert_="all").transform.tfms_list)

    # set this off if you want different random initialization every time
    seed_everything(42, workers=cfg.trainer.workers)

    # Dataclass for custom Image transform See dataset configuration in .yaml
    @dataclass
    class ObjectDetectionInputTransform(InputTransform):

        # transforms added to training data
        def train_per_sample_transform(self):
            return instantiate(cfg.dataset.train_transform, _convert_="all")

        # transforms added to validation data
        def val_per_sample_transform(self):
            return instantiate(cfg.dataset.val_transform, _convert_="all")

    # ----------
    # INSTANTIATE DATASET FROM HYDRA CONF
    # -----------

    # train_trans = instantiate(cfg.dataset.train_transform, _convert_="all")

    # print(train_trans.transform.tfms_list)

    # input("TEST")

    dm = ObjectDetectionData.from_coco(
        train_folder=cfg.dataset.path_folder_images,
        train_ann_file=cfg.dataset.path_folder_annotations,
        val_split=cfg.dataset.val_split,
        train_transform=ObjectDetectionInputTransform,
        val_transform=ObjectDetectionInputTransform,
        batch_size=cfg.dataset.batch_size)

    # ----------
    # INSTANTIATE MODEL FROM HYDRA CONF
    # -----------

    # setup number of class at runtime. Number of output classes
    cfg.model.model.num_classes = dm.num_classes

    model = instantiate(cfg.model.model)

    # ----------
    # INSTANTIATE TRAINER FROM HYDRA CONF
    # -----------

    # instantiate trainer

    trainer = instantiate(cfg.trainer.default)

    # ----------
    # LOG HYDRA CONF AS ML FLOW ARTIFACT
    # -----------

    # To use MlFlow with Pytorch Lightning you need Run id because PL is using MlflowClient
    mlFlowRunId = trainer.logger[0].run_id
    mlFlowClient = trainer.logger.experiment[0]

    mlFlowArtifactPath = HydraConfig.get()["runtime"]["cwd"] + "/conf/"

    print("HYDRA RUNTIME CWD {}".format(HydraConfig.get()["runtime"]["cwd"]))

    modelFile = mlFlowArtifactPath + "model/" + \
        HydraConfig.get()["runtime"]["choices"]["model"] + ".yaml"
    trainerFile = mlFlowArtifactPath + "trainer/" + \
        HydraConfig.get()["runtime"]["choices"]["trainer"] + ".yaml"
    datasetFile = mlFlowArtifactPath + "dataset/" + \
        HydraConfig.get()["runtime"]["choices"]["dataset"] + ".yaml"

    # Save yaml file as mlflow artifacts
    mlFlowClient.log_artifact(mlFlowRunId, modelFile, "model")
    mlFlowClient.log_artifact(mlFlowRunId, trainerFile, "trainer")
    mlFlowClient.log_artifact(mlFlowRunId, datasetFile, "dataset")

    # Keep track to model path
    mlFlowClient.log_param(
        mlFlowRunId, "model_path",
        HydraConfig.get()["runtime"]["cwd"] + "/" + cfg.experiment_name +
        "/exp_" + str(cfg.experiment_number))

    # Path to saved models

    if not os.path.exists(trainer.checkpoint_callback.dirpath):
        os.makedirs(trainer.checkpoint_callback.dirpath)

    # ----------
    # START TRAINING
    # -----------

    if cfg.model.from_scratch:
        print("FROM SCRATCH")
        trainer.fit(model=model, datamodule=dm)

    else:

        if (cfg.trainer.ckpt_path != None):
            print("RESUME TRAINING")
            model = model.load_from_checkpoint(cfg.trainer.ckpt_path)

        trainer.finetune(model=model,
                         datamodule=dm,
                         strategy=cfg.trainer.strategy)
Ejemplo n.º 4
0
            os.getcwd(), "data/coco128/annotations/instances_train2017.json"))
    parser.add_argument('--max_epochs', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=1e-3)
    parser.add_argument('--gpus', type=int, default=None)
    args = parser.parse_args()

    # 1. Download the data
    if args.download:
        # Dataset Credit: https://www.kaggle.com/ultralytics/coco128
        download_data(
            "https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip",
            os.path.join(os.getcwd(), "data/"))

    # 2. Load the Data
    datamodule = ObjectDetectionData.from_coco(
        train_folder=args.train_folder,
        train_ann_file=args.train_ann_file,
        batch_size=2)

    # 3. Build the model
    model = ObjectDetector(num_classes=datamodule.num_classes)

    # 4. Create the trainer
    trainer = flash.Trainer(max_epochs=args.max_epochs, gpus=args.gpus)

    # 5. Finetune the model
    trainer.finetune(model, datamodule)

    # 6. Save it!
    trainer.save_checkpoint("object_detection_model.pt")
Ejemplo n.º 5
0
from flash.core.integrations.fiftyone import visualize
from flash.core.utilities.imports import example_requires
from flash.image import ObjectDetectionData, ObjectDetector
from flash.image.detection.serialization import FiftyOneDetectionLabels

example_requires("image")

import icedata  # noqa: E402

# 1. Create the DataModule
data_dir = icedata.fridge.load_data()

datamodule = ObjectDetectionData.from_folders(
    train_folder=data_dir,
    predict_folder=data_dir,
    val_split=0.1,
    image_size=128,
    parser=icedata.fridge.parser,
)

# 2. Build the task
model = ObjectDetector(head="efficientdet",
                       backbone="d0",
                       num_classes=datamodule.num_classes,
                       image_size=128)

# 3. Create the trainer and finetune the model
trainer = flash.Trainer(max_epochs=1)
trainer.finetune(model, datamodule=datamodule, strategy="freeze")

# 4. Set the serializer and get some predictions
Ejemplo n.º 6
0
def test_training_yolov5(capsys):

    Path("testModels").mkdir(parents=True, exist_ok=True)

    with capsys.disabled():

        with initialize(config_path="conf"):

            cfg = compose(config_name="objectdetection")
            cfg.trainer.default.callbacks[0].dirpath = os.getcwd(
            ) + "/testModels"
            cfg.trainer.default.max_epochs = 2

            cfg.model.model.backbone = "medium"
            cfg.model.model.head = "yolov5"

            # TRAINING REPRODUCIBILITY
            # -----------

            # set this off if you want different random initialization every time
            seed_everything(42, workers=cfg.trainer.workers)

            # Dataclass for custom Image transform See dataset configuration in .yaml
            @dataclass
            class ObjectDetectionInputTransform(InputTransform):

                # transforms added to training data
                def train_per_sample_transform(self):
                    return instantiate(cfg.dataset.train_transform,
                                       _convert_="all")

                # transforms added to validation data
                def val_per_sample_transform(self):
                    return instantiate(cfg.dataset.val_transform,
                                       _convert_="all")

            # ----------
            # INSTANTIATE DATASET FROM HYDRA CONF
            # -----------

            # train_trans = instantiate(cfg.dataset.train_transform, _convert_="all")

            # print(train_trans.transform.tfms_list)

            # input("TEST")

            dm = ObjectDetectionData.from_coco(
                train_folder=cfg.dataset.path_folder_images,
                train_ann_file=cfg.dataset.path_folder_annotations,
                val_split=cfg.dataset.val_split,
                train_transform=ObjectDetectionInputTransform,
                val_transform=ObjectDetectionInputTransform,
                batch_size=cfg.dataset.batch_size)

            # ----------
            # INSTANTIATE MODEL FROM HYDRA CONF
            # -----------

            #setup number of class at runtime. Number of output classes
            cfg.model.model.num_classes = dm.num_classes

            model = instantiate(cfg.model.model)

            # ----------
            # INSTANTIATE TRAINER FROM HYDRA CONF
            # -----------

            # instantiate trainer

            trainer = instantiate(cfg.trainer.default)

            # ----------
            # START TRAINING
            # -----------

            trainer.fit(model=model, datamodule=dm)

            assert True
Ejemplo n.º 7
0
def test_onnx_conversion(capsys):

    with capsys.disabled():

        with initialize(config_path="conf"):

            cfg = compose(config_name="objectdetection")

            cfg.model.model.backbone = "medium"
            cfg.model.model.head = "yolov5"

            # TRAINING REPRODUCIBILITY
            # -----------

            # set this off if you want different random initialization every time
            seed_everything(42, workers=cfg.trainer.workers)

            # Dataclass for custom Image transform See dataset configuration in .yaml
            @dataclass
            class ObjectDetectionInputTransform(InputTransform):

                # transforms added to training data
                def train_per_sample_transform(self):
                    return instantiate(cfg.dataset.train_transform,
                                       _convert_="all")

                # transforms added to validation data
                def val_per_sample_transform(self):
                    return instantiate(cfg.dataset.val_transform,
                                       _convert_="all")

            # ----------
            # INSTANTIATE DATASET FROM HYDRA CONF
            # -----------

            # train_trans = instantiate(cfg.dataset.train_transform, _convert_="all")

            # print(train_trans.transform.tfms_list)

            # input("TEST")

            dm = ObjectDetectionData.from_coco(
                train_folder=cfg.dataset.path_folder_images,
                train_ann_file=cfg.dataset.path_folder_annotations,
                val_split=cfg.dataset.val_split,
                train_transform=ObjectDetectionInputTransform,
                val_transform=ObjectDetectionInputTransform,
                batch_size=cfg.dataset.batch_size)

            # ----------
            # INSTANTIATE MODEL FROM HYDRA CONF
            # -----------

            #setup number of class at runtime. Number of output classes
            cfg.model.model.num_classes = dm.num_classes

            model = instantiate(cfg.model.model)

            model = model.load_from_checkpoint(os.getcwd() +
                                               "/testModels/modelName.ckpt")

            #----------
            # CONVERT MODEL TO ONNX
            #-----------

            dummy_input_real = torch.randn(cfg.onnx.model_batch_size,
                                           cfg.onnx.model_channel_input,
                                           cfg.onnx.model_height_input,
                                           cfg.onnx.model_width_input)

            # model is in model.adapter.model
            model_to_convert = model.adapter.model
            # Now model is a pytorch nn..Module
            model_to_convert = model_to_convert.cpu()

            # output class value
            #print(model_to_convert.nc)
            cfg.onnx.model_onnx_path = os.getcwd(
            ) + "/testModels/modelName.onnx"

            torch.onnx.export(model_to_convert,
                              dummy_input_real,
                              cfg.onnx.model_onnx_path,
                              opset_version=cfg.onnx.opset_version)

            #----------
            # CHECK ONNX MODEL
            #-----------

            onnx_model = onnx.load(cfg.onnx.model_onnx_path)
            onnx.checker.check_model(onnx_model)

            # ----------
            # ONNXRUNTIME CHECK WITH PL MODEL
            # -----------

            # Test Onnxruntime
            ort_session = onnxruntime.InferenceSession(
                cfg.onnx.model_onnx_path)

            ort_inputs = {
                ort_session.get_inputs()[0].name: to_numpy(dummy_input_real)
            }
            ort_outs = ort_session.run(None, ort_inputs)

            modelPl = model_to_convert.eval()
            score = modelPl(dummy_input_real)

            np.testing.assert_allclose(to_numpy(score[0]),
                                       ort_outs[0],
                                       rtol=1e-03,
                                       atol=1e-05)

            assert True
Ejemplo n.º 8
0
def train_with_hydra(cfg: DictConfig):


    cfg.inference.base_path= cfg.inference.model_path_to_load.split("train/",1)[0] +"inference"
    print("INFERENCE RESULTS WILL BE SAVED {}".format(cfg.inference.base_path))

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # For inferece set always batch_size = 1
    cfg.inference.batch_size = 1

    createFolderForExplanation(cfg)

    # ----------
    # INSTANTIATE TEST TRANSFORM DATA
    # -----------

    # Dataclass for custom Image transform See dataset configuration in .yaml

    @dataclass
    class ObjectDetectionInputTransform(InputTransform):

        def predict_per_sample_transform(self):
            return instantiate(cfg.dataset.test_transform, _convert_="all")

    # ----------
    # INSTANTIATE COCO DATA
    # -----------

    # Load COCO formatted dataset in fiftyone
    fiftyone_predict_dataset = fo.Dataset.from_dir(
        dataset_type=fo.types.COCODetectionDataset,
        data_path=cfg.inference.path_folder_images,
        labels_path=cfg.inference.path_folder_annotations,
        include_id=True,
        label_field="ground_truth"
    )

    class_labels = fiftyone_predict_dataset.default_classes

    # create datamodule to load data in lightning
    datamodule = ObjectDetectionData.from_fiftyone(

        predict_dataset=fiftyone_predict_dataset,
        predict_transform=ObjectDetectionInputTransform,
        label_field="ground_truth_detections",
        batch_size=cfg.inference.batch_size
    )


    # ----------
    # INSTANTIATE MODEL AND TRAINER
    # -----------

    model = instantiate(cfg.model.model)

    
    # if((cfg.inference.model_path_to_load != None) and (cfg.inference.model_path_to_load != "")):
    #     print("LOAD PRETRAINED WEIGHT")
    #     model = model.load_from_checkpoint(
    #         cfg.inference.model_path_to_load)

    
    # instantiate trainer
    trainer = instantiate(cfg.trainer.default)

    # ----------
    # RUN PREDICTION
    # -----------

    # All prediction in your dataset
    predictions = trainer.predict(model, datamodule=datamodule)

    # model needs to put on gpu after train.predict in order to run explanation on gpu
    if(torch.cuda.is_available()):
        model = model.to(device)

    # model in eval model for explainability
    model.eval()

    # over all predictions
    for i, sample in enumerate(fiftyone_predict_dataset):

        detections = []

        
        # 0 is because batch_size = 1
        #over all bboxes in one image
        for  bbox,score,label_index in zip(predictions[i][0][DataKeys.PREDS]["bboxes"],predictions[i][0][DataKeys.PREDS]["scores"],predictions[i][0][DataKeys.PREDS]["labels"]):
            
            # Original Image Dimension
            img_width_orig = sample.metadata["width"]
            img_height_orig = sample.metadata["height"]

            # model input dimension
            model_input_height, model_input_width = predictions[i][0][DataKeys.METADATA]["size"]

            # Coordinate rescale format is (x1,y1,x2,y2)

            rescale_coordinate = scale_coords(
                (model_input_height, model_input_width), bbox, (img_height_orig, img_width_orig))

            #  Need to change from (x1,y1,x2,y2)-> (x1,y1,width,heigth). Coco annotations are in this format

            rescale_coordinate[2] = rescale_coordinate[2] - \
                rescale_coordinate[0]
            rescale_coordinate[3] = rescale_coordinate[3] - \
                rescale_coordinate[1]

            # Coordinates in Fiftyone are normalized for Coco

            rescale_coordinate[[0, 2]] /= img_width_orig
            rescale_coordinate[[1, 3]] /= img_height_orig

            
            # Detection threshold
            if(score> cfg.inference.threshold):

                detections.append(
                    fo.Detection(
                        label=class_labels[label_index],
                        bounding_box=rescale_coordinate.tolist(),
                        confidence=score
                    ))

        # save new detection to fifyone dataset
        sample["inference"] = fo.Detections(detections=detections)
        sample.save()

    results = fiftyone_predict_dataset.evaluate_detections(
        "inference",
        gt_field="ground_truth_detections",
        eval_key="objectDetection_eval",
        compute_mAP=True,
    )

    # Save Confusion Matrix

    plot = results.plot_confusion_matrix(classes=class_labels,
                                         backend="matplotlib", figsize=(6, 6))

    plot.savefig(cfg.inference.confusion_matrix.path_to_confusion_matrix_image)

    print(results.mAP())
    print(results.metrics())
Ejemplo n.º 9
0
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import flash
from flash.core.data.utils import download_data
from flash.image import ObjectDetectionData, ObjectDetector

# 1. Create the DataModule
# Dataset Credit: https://www.kaggle.com/ultralytics/coco128
download_data(
    "https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip",
    "data/")

datamodule = ObjectDetectionData.from_coco(
    train_folder="data/coco128/images/train2017/",
    train_ann_file="data/coco128/annotations/instances_train2017.json",
    val_split=0.1,
    image_size=128,
)

# 2. Build the task
model = ObjectDetector(head="efficientdet",
                       backbone="d0",
                       num_classes=datamodule.num_classes,
                       image_size=128)

# 3. Create the trainer and finetune the model
trainer = flash.Trainer(max_epochs=1)
trainer.finetune(model, datamodule=datamodule, strategy="freeze")

# 4. Detect objects in a few images!
predictions = model.predict([
import flash
from flash.core.integrations.fiftyone import visualize
from flash.core.utilities.imports import example_requires
from flash.image import ObjectDetectionData, ObjectDetector

example_requires("image")

import icedata  # noqa: E402

# 1. Create the DataModule
data_dir = icedata.fridge.load_data()

datamodule = ObjectDetectionData.from_icedata(
    train_folder=data_dir,
    predict_folder=os.path.join(data_dir, "odFridgeObjects", "images"),
    val_split=0.1,
    transform_kwargs={"image_size": 128},
    parser=icedata.fridge.parser,
    batch_size=8,
)

# 2. Build the task
model = ObjectDetector(
    head="efficientdet",
    backbone="d0",
    labels=datamodule.labels,
    image_size=128,
    lr_scheduler=("multisteplr", {
        "milestones": [20]
    }),
)
Ejemplo n.º 11
0
# See the License for the specific language governing permissions and
# limitations under the License.
import flash
from flash.core.data.utils import download_data
from flash.image import ObjectDetectionData, ObjectDetector

# 1. Create the DataModule
# Dataset Credit: https://www.kaggle.com/ultralytics/coco128
download_data(
    "https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip",
    "data/")

datamodule = ObjectDetectionData.from_coco(
    train_folder="data/coco128/images/train2017/",
    train_ann_file="data/coco128/annotations/instances_train2017.json",
    val_split=0.1,
    transform_kwargs={"image_size": 512},
    batch_size=4,
)

# 2. Build the task
model = ObjectDetector(head="efficientdet",
                       backbone="d0",
                       num_classes=datamodule.num_classes,
                       image_size=512)

# 3. Create the trainer and finetune the model
trainer = flash.Trainer(max_epochs=1)
trainer.finetune(model, datamodule=datamodule, strategy="freeze")

# 4. Detect objects in a few images!
Ejemplo n.º 12
0
# limitations under the License.
import flash
from flash.core.data.utils import download_data
from flash.image import ObjectDetectionData, ObjectDetector

# 1. Download the data
# Dataset Credit: https://www.kaggle.com/ultralytics/coco128
download_data(
    "https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip",
    "data/")

# 2. Load the Data
datamodule = ObjectDetectionData.from_coco(
    train_folder="data/coco128/images/train2017/",
    train_ann_file="data/coco128/annotations/instances_train2017.json",
    val_split=0.3,
    batch_size=4,
    num_workers=4,
)

# 3. Build the model
model = ObjectDetector(model="retinanet", num_classes=datamodule.num_classes)

# 4. Create the trainer
trainer = flash.Trainer(max_epochs=3,
                        limit_train_batches=1,
                        limit_val_batches=1)

# 5. Finetune the model
trainer.finetune(model, datamodule=datamodule)