Ejemplo n.º 1
0
    def ThreePrismGraph():
        r"""
        Return 3-prism graph.

        EXAMPLES::

            sage: from flexrilog import GraphGenerator, FlexRiGraph
            sage: FlexRiGraph([(0, 3), (0, 4), (0, 5), (1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4)]) == GraphGenerator.ThreePrismGraph()
            True

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.ThreePrismGraph()
            sphinx_plot(G)
        """
        G = FlexRiGraph(Integer(7916),
                        name='3-prism',
                        pos={
                            4: [0.6, 0.4],
                            5: [0, 1.4],
                            2: [1, 1.4],
                            3: [1, 0],
                            0: [0, 0],
                            1: [0.6, 1]
                        })
        G._swap_xy()
        return G
Ejemplo n.º 2
0
 def Deltoid(cls, par_type='rational'):
     r"""
     Return a deltoid motion.
     """
     if par_type == 'rational':
         FF = FunctionField(QQ, 't')
         t = FF.gen()
         C = {
             _sage_const_0 : vector((_sage_const_0 , _sage_const_0 )),
             _sage_const_1 : vector((_sage_const_1 , _sage_const_0 )),
             _sage_const_2 : vector((_sage_const_4 *(t**_sage_const_2  - _sage_const_2
                                                     )/(t**_sage_const_2  + _sage_const_4 ), _sage_const_12 *t/(t**_sage_const_2  + _sage_const_4 ))),
             _sage_const_3 : vector(((t**_sage_const_4  - _sage_const_13 *t**_sage_const_2  + _sage_const_4
                                      )/(t**_sage_const_4  + _sage_const_5 *t**_sage_const_2  + _sage_const_4 ),
                                      _sage_const_6 *(t**_sage_const_3  - _sage_const_2 *t)/(t**_sage_const_4  + _sage_const_5 *t**_sage_const_2  + _sage_const_4 )))
             }
         G = FlexRiGraph([[0, 1], [1, 2], [2, 3], [0, 3]])
         return GraphMotion.ParametricMotion(G, C, 'rational', sampling_type='tan', check=False)
     elif par_type == 'symbolic':
         t = var('t')
         C = {
             _sage_const_0 : vector((_sage_const_0 , _sage_const_0 )),
             _sage_const_1 : vector((_sage_const_1 , _sage_const_0 )),
             _sage_const_2 : vector((_sage_const_4 *(t**_sage_const_2  - _sage_const_2
                                                     )/(t**_sage_const_2  + _sage_const_4 ), _sage_const_12 *t/(t**_sage_const_2  + _sage_const_4 ))),
             _sage_const_3 : vector(((t**_sage_const_4  - _sage_const_13 *t**_sage_const_2  + _sage_const_4
                                      )/(t**_sage_const_4  + _sage_const_5 *t**_sage_const_2  + _sage_const_4 ),
                                      _sage_const_6 *(t**_sage_const_3  - _sage_const_2 *t)/(t**_sage_const_4  + _sage_const_5 *t**_sage_const_2  + _sage_const_4 )))
             }
         G = FlexRiGraph([[0, 1], [1, 2], [2, 3], [0, 3]])
         return ParametricGraphMotion.ParametricMotion(G, C, 'symbolic', sampling_type='tan', check=False)
     else:
         raise exceptions.ValueError('Deltoid with par_type ' + str(par_type) + ' is not supported.')
Ejemplo n.º 3
0
    def NoNACGraph():
        r"""
        Return a graph without NAC-coloring.

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.NoNACGraph()
            NoNAC: FlexRiGraph with 7 vertices and 12 edges

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.NoNACGraph()
            sphinx_plot(G)
        """
        return FlexRiGraph(Integer(448412),
                           pos={
                               0: (-0.5, -0.75),
                               1: (0.5, 0.5),
                               2: (1.5, 0.5),
                               3: (2.5, -0.75),
                               4: (0.5, 1.5),
                               5: (1.5, 1.5),
                               6: (1, -0.25)
                           },
                           name='NoNAC')
Ejemplo n.º 4
0
    def S4Graph():
        r"""
        Return the graph $S_4$.

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.S4Graph()
            S_4: FlexRiGraph with 8 vertices and 14 edges

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.S4Graph()
            sphinx_plot(G)
        """
        return FlexRiGraph(
            [(1, 4), (2, 3), (3, 6), (6, 5), (2, 5), (5, 4), (6, 1), (3, 4),
             (2, 1), (5, 7), (5, 8), (7, 4), (7, 8), (4, 8)],
            pos={
                1: (0.5, -0.866025),
                2: (1., 0.),
                3: (0.5, 0.866025),
                4: (-0.5, 0.866025),
                5: (-1., 0.),
                6: (-0.5, -0.866025),
                7: (-0.519, 0.30),
                8: (-0.952, 0.550),
            },
            name='S_4')
Ejemplo n.º 5
0
    def S3Graph():
        r"""
        Return the graph $S_3$.

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.S3Graph()
            S_3: FlexRiGraph with 8 vertices and 14 edges

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.S3Graph()
            sphinx_plot(G)
        """
        return FlexRiGraph(
            [(7, 3), (2, 6), (5, 1), (2, 5), (7, 4), (0, 6), (2, 7), (4, 5),
             (3, 6), (4, 6), (3, 5), (7, 1), (0, 7), (0, 1)],
            pos={
                1: (-0.8, -1.4),
                7: (1., 0.),
                3: (-1., 0.),
                6: (-0.5, -0.866025),
                2: (0.5, -0.866025),
                5: (-0.5, 0.866025),
                4: (0.5, 0.866025),
                0: (0.8, -1.4)
            },
            name='S_3')
Ejemplo n.º 6
0
    def S1Graph():
        r"""
        Return the graph $S_1$.

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.S1Graph()
            S_1: FlexRiGraph with 8 vertices and 14 edges

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.S1Graph()
            sphinx_plot(G)
        """
        return FlexRiGraph(
            [[6, 1], [2, 3], [5, 4], [4, 3], [6, 3], [6, 5], [1, 2], [8, 3],
             [8, 5], [7, 4], [6, 7], [8, 7], [1, 5], [4, 2]],
            pos={
                1: (-1, 0.8),
                2: (-2, -0.2),
                3: (0, -1),
                4: (-1, 0),
                5: (0, 1),
                6: (1, 0),
                7: (0, -1.75),
                8: (1.8, 0)
            },
            name='S_1')
Ejemplo n.º 7
0
    def Q6Graph():
        r"""
        Return the graph $Q_6$.

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.Q6Graph()
            Q_6: FlexRiGraph with 8 vertices and 13 edges

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.Q6Graph()
            sphinx_plot(G)
        """
        G = FlexRiGraph(
            [(0, 1), (0, 2), (0, 5), (1, 4), (1, 7), (2, 3), (2, 6), (3, 6),
             (3, 7), (4, 6), (4, 7), (5, 6), (5, 7)],
            pos={
                0: (0.0, -0.433),
                1: (-0.5, -0.866),
                2: (0.5, -0.866),
                3: (1.0, 0.0),
                4: (-1.0, 0.0),
                5: (0.0, 0.0),
                6: (0.5, 0.866),
                7: (-0.5, 0.866)
            },
            name='Q_6')
        return G
Ejemplo n.º 8
0
    def Q5Graph():
        r"""
        Return the graph $Q_5$.

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.Q5Graph()
            Q_5: FlexRiGraph with 8 vertices and 13 edges

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.Q5Graph()
            sphinx_plot(G)
        """
        G = FlexRiGraph(
            [(0, 1), (0, 3), (0, 6), (1, 2), (1, 6), (2, 4), (2, 7), (3, 5),
             (3, 7), (4, 6), (4, 7), (5, 6), (5, 7)],
            pos={
                0: (-0.587, -0.809),
                1: (0.587, -0.809),
                2: (0.951, 0.309),
                3: (-0.951, 0.309),
                4: (0.235, 0.323),
                5: (-0.235, 0.323),
                6: (0.0, -0.4),
                7: (0.0, 1.0)
            },
            name='Q_5')
        return G
Ejemplo n.º 9
0
    def SmallestFlexibleLamanGraph():
        r"""
        Return the smallest Laman graph that has a flexible labeling.

        EXAMPLES::

            sage: from flexrilog import GraphGenerator, FlexRiGraph
            sage: FlexRiGraph([[0,1],[1,2],[0,2],[0,3],[1,3],[2,4],[3,4]]) == GraphGenerator.SmallestFlexibleLamanGraph()
            True

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.SmallestFlexibleLamanGraph()
            sphinx_plot(G)
        """
        G = FlexRiGraph(
            [[0, 1], [1, 2], [0, 2], [0, 3], [1, 3], [2, 4], [3, 4]],
            name='SmallestFlexibleLamanGraph',
            pos={
                0: [0, 0],
                1: [2, 0],
                2: [1, 1],
                3: [1, -1],
                4: [3, 0]
            })
        return G
Ejemplo n.º 10
0
    def S5Graph(old_labeling=False):
        r"""
        Return the graph $S_5$.

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.S5Graph()
            S_5: FlexRiGraph with 8 vertices and 13 edges

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.S5Graph()
            sphinx_plot(G)
        """
        if not old_labeling:
            return FlexRiGraph(
                [(1, 2), (1, 3), (1, 4), (1, 5), (2, 6), (2, 3), (3, 7),
                 (4, 5), (4, 6), (4, 7), (5, 8), (6, 8), (7, 8)],
                pos={
                    2: (-0.588, -0.809),
                    3: (0.588, -0.809),
                    7: (0.588, 0.309),
                    6: (-0.588, 0.309),
                    4: (0.235, 0),
                    5: (-0.235, 0),
                    1: (0.000, -0.400),
                    8: (0.000, 0.7)
                },
                name='S_5')

        return FlexRiGraph(
            [(0, 3), (0, 4), (0, 5), (1, 2), (1, 4), (1, 6), (2, 3), (2, 6),
             (3, 7), (4, 7), (5, 6), (5, 7), (6, 7)],
            pos={
                1: (-0.588, -0.809),
                2: (0.588, -0.809),
                3: (0.588, 0.309),
                4: (-0.588, 0.309),
                7: (0.235, 0),
                5: (-0.235, 0),
                6: (0.000, -0.400),
                0: (0.000, 0.7)
            },
            name='S_5')
Ejemplo n.º 11
0
    def K23Graph():
        r"""
        Return the graph $K_{2,3}$.

        EXAMPLES::

            sage: from flexrilog import GraphGenerator, FlexRiGraph
            sage: FlexRiGraph(graphs.CompleteBipartiteGraph(2,3)).is_isomorphic(GraphGenerator.K23Graph())
            True

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.K23Graph()
            sphinx_plot(G)
        """
        K23 = FlexRiGraph([(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4)],
                          name='K23',
                          pos={
                              4: (0, 1),
                              5: (1, 0),
                              3: (0.00, 0.000),
                              2: (0, -1),
                              1: (-1, 0)
                          })
        for delta in K23.NAC_colorings():
            for edges in [delta.red_edges(), delta.blue_edges()]:
                if len(edges) == 2:
                    delta.set_name('alpha' +
                                   str(edges[0].intersection(edges[1])[0]))
                elif len(edges) == 3:
                    if Set(edges[0]).intersection(Set(edges[1])).intersection(
                            Set(edges[2])):
                        delta.set_name('gamma')
                    else:
                        for e in edges:
                            if not e.intersection(
                                    Set(
                                        flatten([
                                            list(e2) for e2 in edges if e2 != e
                                        ]))):
                                delta.set_name('beta' + str(e[0]) + str(e[1]))
        return K23
Ejemplo n.º 12
0
    def K33Graph():
        r"""
        Return the graph $K_{3,3}$.

        EXAMPLES::

            sage: from flexrilog import GraphGenerator, FlexRiGraph
            sage: FlexRiGraph(graphs.CompleteBipartiteGraph(3,3)).is_isomorphic(GraphGenerator.K33Graph())
            True

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.K33Graph()
            sphinx_plot(G)
        """
        K33 = FlexRiGraph(
            [(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4),
             (5, 6)],
            name='K33',
            pos={
                4: (0.500, 0.866),
                5: (-0.500, 0.866),
                6: (-1.00, 0.000),
                3: (1.00, 0.000),
                2: (0.500, -0.866),
                1: (-0.500, -0.866)
            })
        for delta in K33.NAC_colorings():
            for edges in [delta.red_edges(), delta.blue_edges()]:
                if len(edges) == 3:
                    delta.set_name('omega' + str(edges[0].intersection(
                        edges[1]).intersection(edges[2])[0]))
                elif len(edges) == 5:
                    for e in edges:
                        if not e.intersection(
                                Set(
                                    flatten(
                                        [list(e2)
                                         for e2 in edges if e2 != e]))):
                            delta.set_name('epsilon' + str(e[0]) + str(e[1]))
        return K33
Ejemplo n.º 13
0
    def LamanGraphs(n):
        r"""
        Return the Laman graphs with ``n`` vertices.

        See [CGGKLS2018b]_.

        INPUT:

        - ``n`` an integer from 3 to 8

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: [len(GraphGenerator.LamanGraphs(n)) for n in range(3,8)]
            [1, 1, 3, 13, 70]
            sage: GraphGenerator.ThreePrismGraph() in GraphGenerator.LamanGraphs(6)
            True
        """
        if n == 3:
            return [FlexRiGraph(Integer(i)) for i in [7]]
        elif n == 4:
            return [FlexRiGraph(Integer(i)) for i in [31]]
        elif n == 5:
            return [FlexRiGraph(Integer(i)) for i in [254, 239, 223]]
        elif n == 6:
            return [
                FlexRiGraph(Integer(i)) for i in [
                    3326, 4011, 7672, 7916, 3934, 10479, 6891, 5791, 3447,
                    12511, 3451, 3311, 3295
                ]
            ]
        elif n == 7:
            return [
                FlexRiGraph(Integer(i)) for i in [
                    120478, 127198, 190686, 104371, 183548, 412894, 102238,
                    167646, 101630, 103932, 103805, 560509, 104055, 112469,
                    112525, 111070, 127575, 190103, 104365, 174558, 189853,
                    186013, 192733, 174823, 111335, 102253, 127567, 167773,
                    113483, 560927, 312735, 102262, 298486, 481867, 1269995,
                    1270351, 190875, 414941, 1256267, 186617, 298919, 401101,
                    313719, 567671, 104126, 123255, 400857, 312759, 102206,
                    120414, 202335, 200059, 331599, 330991, 222443, 567647,
                    182879, 169631, 659039, 410847, 167711, 174303, 101751,
                    396511, 298223, 104171, 173279, 101743, 101615, 101599
                ]
            ]
        elif n == 8:
            return [
                FlexRiGraph(Integer(i)) for i in [
                    7510520, 19111408, 6739377, 6740393, 8000953, 6462968,
                    6475132, 6411644, 69373436, 6393718, 18995565, 20125169,
                    20140275, 19617907, 11357278, 6411934, 12324062, 6418654,
                    6418797, 12127482, 69311341, 10964186, 69325181, 20126170,
                    19111826, 170989214, 170990174, 170957470, 204540766,
                    104368318, 104400062, 20584859, 93882590, 210028766,
                    20093843, 20126547, 210799326, 19127059, 160959710,
                    6419230, 20126603, 35765022, 19118979, 36778783, 7877407,
                    7038046, 7935582, 7947390, 7750878, 12094716, 11636460,
                    11636216, 12703097, 6396410, 13944030, 26774750, 10610910,
                    6396654, 37850494, 12707181, 14191866, 13733610, 69311198,
                    21091693, 26316494, 22058477, 50437485, 6462174, 10833118,
                    6886654, 10816766, 25283806, 6410494, 25267454, 6411870,
                    10609886, 6393694, 69310174, 6395757, 10800350, 10587870,
                    10587390, 6393086, 6465020, 19174901, 7459635, 6478445,
                    35829997, 10672733, 19060973, 35838077, 7459258, 20026868,
                    6470121, 10672377, 69376505, 6482285, 6484205, 10676461,
                    69376749, 69380589, 36739453, 10678493, 69390589, 6470554,
                    7444402, 6927794, 7903674, 7935418, 20093404, 19111764,
                    50568561, 19111820, 7909811, 6470492, 6482718, 7942515,
                    7688563, 8132019, 7950651, 6484765, 13669881, 12899677,
                    13153629, 13161597, 12760537, 21143017, 25271785, 25337305,
                    6461945, 21157213, 25285981, 6395827, 12887533, 21272045,
                    25464301, 12768861, 21157101, 21149133, 25285869, 25277901,
                    25351389, 25337549, 26252765, 25730285, 50503005, 6460921,
                    6461165, 35755389, 35820797, 10652925, 6672166, 20518261,
                    51481974, 6470539, 10803611, 6465459, 10790807, 6609679,
                    19056061, 69507983, 19187127, 10821356, 12885740, 6704926,
                    6692588, 10833694, 6706846, 10836574, 10835614, 69381007,
                    35969311, 35860269, 6470513, 6482739, 6958893, 37924653,
                    35860254, 6958878, 6404012, 35765043, 6467444, 6405034,
                    35764021, 6958766, 8130343, 6484597, 35860142, 37924526,
                    37938743, 13166135, 13154895, 25281790, 12895486, 25478391,
                    12887539, 21145075, 21140985, 25269753, 21158479, 12883449,
                    18993406, 10799358, 25466333, 21551215, 21543247, 19190007,
                    50444623, 19063031, 6465423, 35753341, 11585183, 6465143,
                    10587767, 6692344, 20581749, 20137333, 20583837, 20092821,
                    20093781, 19570453, 50699494, 12897660, 20533367, 6704508,
                    20042519, 11364431, 11881039, 6403925, 6403981, 6478619,
                    10672795, 69376923, 69388731, 36739515, 12339295, 6482703,
                    6419031, 12142715, 6419215, 11880683, 11352267, 11868875,
                    69325599, 69389087, 12327131, 69391007, 11882715, 35838495,
                    36739871, 7122342, 7638950, 20042142, 51484077, 19504918,
                    50699606, 6954620, 13147772, 35757884, 6966846, 12896179,
                    35868222, 51681511, 21153715, 51491047, 50436019, 13154539,
                    12892619, 35756475, 6887031, 12904783, 21153211, 12895675,
                    25478559, 26821727, 10610327, 6396787, 12696395, 21158123,
                    21158235, 21150155, 21092715, 6493939, 37852603, 6410683,
                    37850927, 12887951, 18999639, 18998679, 26813647, 12756891,
                    26559695, 6855287, 19467639, 35982711, 6410871, 50433399,
                    21164239, 6480315, 21162319, 35778719, 27004111, 10799547,
                    6624999, 6402791, 21098831, 25898187, 71605071, 22059855,
                    19190175, 84056783, 10805663, 10610263, 6393709, 6461339,
                    6473147, 35771517, 35763549, 18976599, 35778655, 10602159,
                    35753759, 10667679, 10798495, 19434911, 27976853, 28624277,
                    28887213, 28625293, 6463416, 7653750, 7653806, 8129910,
                    7645670, 20518302, 20027286, 6478522, 20028246, 20093654,
                    51484083, 19570326, 7652790, 20486558, 19126870, 20125581,
                    35764910, 19603213, 19118917, 50699683, 7137575, 7654183,
                    60082263, 60082319, 60081303, 20533535, 6478460, 119047351,
                    119048367, 117884055, 117885071, 20518679, 20107927,
                    35859898, 6475580, 6958522, 37924282, 6413114, 35763894,
                    35779127, 38837051, 36772667, 7871291, 8136103, 37938493,
                    20486935, 20585047, 19585559, 13165885, 42067261,
                    110888095, 177489055, 235291807, 20140687, 51678631,
                    236193183, 19512071, 20130631, 50713767, 35772990,
                    10817516, 50967719, 36771518, 38835902, 12881900, 7870142,
                    50705799, 36743991, 25268204, 19618319, 211042527,
                    19610183, 35778750, 50711847, 36769598, 6462456, 7868222,
                    6773323, 7547723, 13671147, 13674987, 35854587, 7235663,
                    7752271, 8133199, 8145007, 12141693, 12127853, 11357293,
                    10970317, 8020063, 12324077, 13675343, 11422813, 13689071,
                    11865577, 11226233, 11218153, 25511151, 19077839, 12193017,
                    25576671, 13460559, 12773723, 71474011, 12708203, 71479771,
                    71477739, 71414251, 22059499, 71866747, 83991019, 14435423,
                    14238843, 12773967, 14225003, 13454443, 13067467, 18999695,
                    22073583, 71872863, 84068703, 20006303, 19485855, 42067103,
                    14421227, 71480015, 13519963, 71478095, 71491935, 69325471,
                    71414607, 22073695, 71872751, 84068591, 51419375, 84449519,
                    36771487, 38835871, 19470575, 21534959, 100767391,
                    71426415, 22071663, 71870831, 84003183, 36778207, 75620575,
                    6415725, 6419023, 8143983, 10606173, 19453087, 7234639,
                    6772299, 35771935, 36738719, 12895471, 36745439, 12805355,
                    21187947, 6494955, 6887803, 71517563, 38931835, 38933755,
                    100863355, 37950715, 12782971, 38868347, 6508795, 31004235,
                    55776843, 14197997, 26330711, 6888047, 21564783, 21370331,
                    12985819, 21582943, 12888303, 10823919, 25562587, 25496815,
                    30106699, 155852363, 147594827, 147150411, 14191993,
                    12963177, 21287151, 37971055, 26318547, 25796179, 38937839,
                    38937951, 25479407, 84100335, 12902639, 25288943, 19076823,
                    38868575, 10692255, 21566703, 10660511, 10689119, 25800263,
                    21160175, 6953567, 6639855, 6893807, 7084271, 38872431,
                    25407171, 51449199, 51451119, 25481439, 26297567, 76096735,
                    19091679, 25340127, 50501855, 6462239, 26741983, 6705375,
                    25562335, 13145339, 12684911, 7902814, 13145695, 12750431,
                    12687083, 21140955, 21138923, 12750075, 21091919, 37850735,
                    36000863, 11617887, 42067039, 10587823, 6393647, 21073135,
                    13944043, 21141199, 36771423, 12756575, 100767327,
                    21139279, 21153007, 21153119, 50435311, 35760479, 18991455,
                    50433375, 26264799, 75810015, 21087599, 12686971, 50500831,
                    19437791, 10653343, 12684655, 25726175, 10587935, 10816735,
                    6393207, 25267423, 6395259, 35753583, 18975983, 6481131,
                    19434847, 10798303, 10653279, 10783967, 6393199, 6393071,
                    6393055
                ]
            ]
Ejemplo n.º 14
0
    def Q2Graph(old_labeling=False):
        r"""
        Return the graph $Q_2$.

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.Q2Graph()
            Q_2: FlexRiGraph with 8 vertices and 13 edges

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.Q2Graph()
            sphinx_plot(G)
        """
        if old_labeling:
            G = FlexRiGraph(
                [(0, 4), (0, 5), (0, 6), (1, 2), (1, 3), (1, 6), (2, 5),
                 (2, 7), (3, 4), (3, 7), (4, 7), (5, 7), (6, 7)],
                pos={
                    0: (-1, 0),
                    1: (1, 0),
                    2: (0.5, -0.866025),
                    3: (0.5, 0.866025),
                    4: (-0.5, 0.866025),
                    5: (-0.5, -0.866025),
                    6: (0, 0.3),
                    7: (0, -0.3)
                },
                name='Q_2')
        else:
            G = FlexRiGraph(
                [(1, 3), (3, 4), (2, 4), (2, 7), (6, 7), (1, 6), (3, 5),
                 (4, 5), (5, 6), (5, 7), (5, 8), (1, 8), (2, 8)],
                pos={
                    1: (-1, 0),
                    2: (1, 0),
                    4: (0.5, -0.866025),
                    7: (0.5, 0.866025),
                    6: (-0.5, 0.866025),
                    3: (-0.5, -0.866025),
                    8: (0, 0.3),
                    5: (0, -0.3)
                },
                name='Q_2')
            for col in G.NAC_colorings():
                num = col.NAC2int()
                if num == 15487:
                    col.set_name('alpha2')
                elif num == 15229:
                    col.set_name('beta')
                elif num == 14589:
                    col.set_name('gamma2')
                elif num == 14466:
                    col.set_name('gamma1')
                elif num == 15106:
                    col.set_name('delta')
                elif num == 15360:
                    col.set_name('alpha1')
                elif num == 14066:
                    col.set_name('zeta34')
                elif num == 13682:
                    col.set_name('epsilon27')
                elif num == 12912:
                    col.set_name('zeta67')
                elif num == 12784:
                    col.set_name('epsilon24')
                elif num == 12687:
                    col.set_name('epsilon13')
                elif num == 13581:
                    col.set_name('epsilon16')
        return G
Ejemplo n.º 15
0
    def Q1Graph(old_labeling=False):
        r"""
        Return the graph $Q_1$.

        EXAMPLE::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.Q1Graph()
            Q_1: FlexRiGraph with 7 vertices and 11 edges

        .. PLOT::
            :scale: 70

            from flexrilog import GraphGenerator
            G = GraphGenerator.Q1Graph()
            sphinx_plot(G)
        """
        if old_labeling:
            return FlexRiGraph(
                [(0, 1), (0, 2), (0, 6), (1, 2), (1, 4), (1, 5), (2, 3),
                 (3, 4), (3, 5), (4, 6), (5, 6)],
                pos={
                    5: (0.500, 0.866),
                    4: (-0.500, 0.866),
                    6: (-1.00, 0.000),
                    3: (1.00, 0.000),
                    2: (0.500, -0.866),
                    0: (-0.500, -0.866),
                    1: (0.000, 0.000)
                },
                name='Q_1')
        G = FlexRiGraph(
            [[5, 6], [5, 7], [6, 7], [1, 5], [2, 6], [2, 4], [1, 3], [3, 7],
             [4, 7], [1, 4], [2, 3]],
            pos={
                4: (0.500, 0.866),
                3: (-0.500, 0.866),
                1: (-1.00, 0.000),
                2: (1.00, 0.000),
                6: (0.500, -0.866),
                5: (-0.500, -0.866),
                7: (0.000, 0.000)
            },
            name='Q_1')
        for cls in G.NAC_colorings_isomorphism_classes():
            if len(cls) == 1:
                delta = cls[0]
                if len(delta.blue_edges()) in [4, 7]:
                    delta.set_name('eta')
                else:
                    delta.set_name('zeta')
            else:
                for delta in cls:
                    for edges in [delta.red_edges(), delta.blue_edges()]:
                        if len(cls) == 4 and len(edges) == 7:
                            u, v = [
                                comp
                                for comp in Graph([list(e) for e in edges
                                                   ]).connected_components()
                                if len(comp) == 2
                            ][0]
                            delta.set_name('epsilon' + (
                                str(u) + str(v) if u < v else str(v) + str(u)))
                            break
                        if len(edges) == 3:
                            vertex = edges[0].intersection(
                                edges[1]).intersection(edges[2])[0]
                            name = 'phi' if [
                                w for w in G.neighbors(vertex)
                                if G.degree(w) == 4
                            ] else 'psi'
                            delta.set_name(name + str(vertex))
                            break
                        if len(edges) == 5:
                            u, v = [
                                comp
                                for comp in Graph([list(e) for e in edges
                                                   ]).connected_components()
                                if len(comp) == 2
                            ][0]
                            delta.set_name('gamma' + str(min(u, v)))
                            break
        return G
Ejemplo n.º 16
0
    def MaxEmbeddingsLamanGraph(n, labeled_from_one=True):
        r"""
        Return the Laman graph with ``n`` vertices with the maximum number of complex embeddings.

        See [GKT2018]_.

        INPUT:

        - ``n`` an integer from 6 to 12

        EXAMPLES::

            sage: from flexrilog import GraphGenerator
            sage: GraphGenerator.MaxEmbeddingsLamanGraph(6).is_isomorphic(GraphGenerator.ThreePrismGraph())
            True

        The graphs:

        .. PLOT::
            :width: 70%

            from flexrilog import GraphGenerator
            G = GraphGenerator.MaxEmbeddingsLamanGraph(6)
            sphinx_plot(G)

        .. PLOT::
            :width: 70%

            from flexrilog import GraphGenerator
            G = GraphGenerator.MaxEmbeddingsLamanGraph(7)
            sphinx_plot(G)


        .. PLOT::
            :width: 70%

            from flexrilog import GraphGenerator
            G = GraphGenerator.MaxEmbeddingsLamanGraph(8)
            sphinx_plot(G)

        .. PLOT::
            :width: 70%

            from flexrilog import GraphGenerator
            G = GraphGenerator.MaxEmbeddingsLamanGraph(9)
            sphinx_plot(G)

        .. PLOT::
            :width: 70%

            from flexrilog import GraphGenerator
            G = GraphGenerator.MaxEmbeddingsLamanGraph(10)
            sphinx_plot(G)

        .. PLOT::
            :width: 70%

            from flexrilog import GraphGenerator
            G = GraphGenerator.MaxEmbeddingsLamanGraph(11)
            sphinx_plot(G)

        .. PLOT::
            :width: 70%

            from flexrilog import GraphGenerator
            G = GraphGenerator.MaxEmbeddingsLamanGraph(12)
            sphinx_plot(G)
        """
        graph_repr = {
            6: 7916,
            7: 1269995,
            8: 170989214,
            9: 11177989553,
            10: 4778440734593,
            11: 18120782205838348,
            12: 252590061719913632,
        }
        positions = {
            7: {
                5: (-1, -1),
                2: (1, -1),
                1: (2.5, 2),
                4: (-1, 1),
                3: (1, 1),
                0: (-2.5, 2),
                6: (0, 0)
            },
            8: {
                6: (-0.00, -17.00),
                7: (2.5, 7.24),
                4: (7.50, 0.00),
                5: (-0.00, -7.24),
                3: (20.00, 0.00),
                1: (-20.00, 0.00),
                2: (-7.50, 0.00),
                0: (-0.00, 19.00)
            },
            9: {
                8: (21.00, 2.00),
                7: (-5.10, 20.00),
                6: (0.17, -5.70),
                3: (7.90, -2.80),
                2: (-5.10, -16.00),
                5: (0.17, 9.70),
                4: (-8.20, 2.00),
                0: (7.90, 6.80),
                1: (-19.00, 2.00),
            },
            10: {
                9: (-20.00, -16.00),
                8: (20.00, -16.00),
                6: (-0.00, -2.30),
                7: (-0.00, 13.00),
                4: (-9.10, -0.20),
                5: (9.10, -0.20),
                1: (-6.00, -11.00),
                0: (-12.00, 21.00),
                2: (6.00, -11.00),
                3: (12.00, 21.00)
            },
            11: {
                9: (7.20, 6.80),
                8: (20.00, 2.00),
                10: (-7.20, 6.80),
                7: (-20.00, 2.00),
                6: (0.00, -6.60),
                2: (7.20, -2.80),
                3: (0.00, 2.00),
                4: (0.00, -16.00),
                5: (-7.20, -2.80),
                0: (0.00, 10.60),
                1: (0.00, 20.00)
            },
            12: {
                11: (20.00, -12.00),
                6: (-20.00, -12.00),
                10: (7.80, 6.20),
                7: (-8.30, -3.90),
                9: (8.30, -3.90),
                8: (-7.80, 6.20),
                0: (15.00, 0.85),
                1: (20.00, 14.00),
                2: (0.00, -2.10),
                3: (-20.00, 14.00),
                4: (0.00, -7.80),
                5: (-15.00, 0.85)
            }
        }

        if n == 6:
            G = GraphGenerator.ThreePrismGraph()
        elif n > 6 and n < 13:
            G = FlexRiGraph(Integer(graph_repr[n]),
                            pos=positions[n],
                            name='MaxEmbeddingsLamanGraph_' + str(n) + 'vert')
        else:
            raise exceptions.ValueError(
                'Only graphs with 6-12 vertices are supported.')
        if not labeled_from_one:
            return G
        else:
            return FlexRiGraph([(u + 1, v + 1)
                                for u, v in G.edges(labels=False)],
                               pos={v + 1: G._pos[v]
                                    for v in G._pos},
                               name=G.name())