Ejemplo n.º 1
0
def figure_eight_example(render=None):
    """Perform a simulation of vehicles on a figure eight.

    Parameters
    ----------
    render: bool, optional
        specifies whether to use the gui during execution

    Returns
    -------
    exp: flow.core.experiment.Experiment
        A non-rl experiment demonstrating the performance of human-driven
        vehicles on a figure eight.
    """
    sim_params = AimsunParams(sim_step=0.5, render=False, emission_path='data')

    if render is not None:
        sim_params.render = render

    vehicles = VehicleParams()
    vehicles.add(veh_id="human",
                 acceleration_controller=(IDMController, {}),
                 num_vehicles=14)

    env_params = EnvParams()

    net_params = NetParams(additional_params=ADDITIONAL_NET_PARAMS.copy())

    scenario = Figure8Scenario(name="figure8",
                               vehicles=vehicles,
                               net_params=net_params)

    env = TestEnv(env_params, sim_params, scenario, simulator='aimsun')

    return Experiment(env)
Ejemplo n.º 2
0
def sugiyama_example(render=None):
    """Perform a simulation of vehicles on a ring road.

    Parameters
    ----------
    render : bool, optional
        specifies whether to use the gui during execution

    Returns
    -------
    exp: flow.core.experiment.Experiment
        A non-rl experiment demonstrating the performance of human-driven
        vehicles on a ring road.
    """
    sim_params = AimsunParams(sim_step=0.5, render=True, emission_path='data')

    if render is not None:
        sim_params.render = render

    vehicles = VehicleParams()
    vehicles.add(veh_id="idm",
                 acceleration_controller=(IDMController, {}),
                 num_vehicles=22)

    env_params = EnvParams()

    additional_net_params = ADDITIONAL_NET_PARAMS.copy()
    net_params = NetParams(additional_params=additional_net_params)

    initial_config = InitialConfig(bunching=20)

    network = RingNetwork(name="sugiyama",
                          vehicles=vehicles,
                          net_params=net_params,
                          initial_config=initial_config)

    env = TestEnv(env_params, sim_params, network, simulator='aimsun')

    return Experiment(env)
Ejemplo n.º 3
0
    # name of the experiment
    exp_tag='aimsun_small_template',

    # name of the flow environment the experiment is running on
    env_name=TestEnv,

    # name of the network class the experiment is running on
    network=Network,

    # simulator that is used by the experiment
    simulator='aimsun',

    # sumo-related parameters (see flow.core.params.SumoParams)
    sim=AimsunParams(sim_step=0.1,
                     render=True,
                     emission_path='data',
                     replication_name="Replication 930",
                     centroid_config_name="Centroid Configuration 910"),

    # environment related parameters (see flow.core.params.EnvParams)
    env=EnvParams(horizon=3000, ),

    # network-related parameters (see flow.core.params.NetParams and the
    # network's documentation or ADDITIONAL_NET_PARAMS component)
    net=NetParams(inflows=InFlows(), template=template_path),

    # vehicles to be placed in the network at the start of a rollout (see
    # flow.core.params.VehicleParams)
    veh=vehicles,
)
Ejemplo n.º 4
0
def bottleneck_example(flow_rate,
                       horizon,
                       restart_instance=False,
                       render=None):
    """
    Perform a simulation of vehicles on a bottleneck.

    Parameters
    ----------
    flow_rate : float
        total inflow rate of vehicles into the bottleneck
    horizon : int
        time horizon
    restart_instance: bool, optional
        whether to restart the instance upon reset
    render: bool, optional
        specifies whether to use the gui during execution

    Returns
    -------
    exp: flow.core.experiment.Experiment
        A non-rl experiment demonstrating the performance of human-driven
        vehicles on a bottleneck.
    """
    if render is None:
        render = False

    sim_params = AimsunParams(sim_step=0.5,
                              render=render,
                              restart_instance=restart_instance)

    vehicles = VehicleParams()

    vehicles.add(veh_id="human", num_vehicles=1)

    additional_env_params = {
        "target_velocity": 40,
        "max_accel": 1,
        "max_decel": 1,
        "lane_change_duration": 5,
        "add_rl_if_exit": False,
        "disable_tb": DISABLE_TB,
        "disable_ramp_metering": DISABLE_RAMP_METER
    }
    env_params = EnvParams(horizon=horizon,
                           additional_params=additional_env_params)

    inflow = InFlows()
    inflow.add(veh_type="human",
               edge="1",
               vehsPerHour=flow_rate,
               departLane="random",
               departSpeed=10)

    traffic_lights = TrafficLightParams()
    if not DISABLE_TB:
        traffic_lights.add(node_id="2")
    if not DISABLE_RAMP_METER:
        traffic_lights.add(node_id="3")

    additional_net_params = {"scaling": SCALING, "speed_limit": 30 / 3.6}
    net_params = NetParams(inflows=inflow,
                           additional_params=additional_net_params)

    initial_config = InitialConfig(spacing="random",
                                   min_gap=5,
                                   lanes_distribution=float("inf"),
                                   edges_distribution=["2", "3", "4", "5"])

    network = BottleneckNetwork(name="bay_bridge_toll",
                                vehicles=vehicles,
                                net_params=net_params,
                                initial_config=initial_config,
                                traffic_lights=traffic_lights)

    env = BottleneckEnv(env_params, sim_params, network, simulator='aimsun')

    return Experiment(env)
def grid_example(render=None):
    """
    Perform a simulation of vehicles on a grid.

    Parameters
    ----------
    render: bool, optional
        specifies whether to use the gui during execution

    Returns
    -------
    exp: flow.core.experiment.Experiment
        A non-rl experiment demonstrating the performance of human-driven
        vehicles and balanced traffic lights on a grid.
    """
    inner_length = 300
    long_length = 500
    short_length = 300
    N_ROWS = 2
    N_COLUMNS = 3
    num_cars_left = 20
    num_cars_right = 20
    num_cars_top = 20
    num_cars_bot = 20
    tot_cars = (num_cars_left + num_cars_right) * N_COLUMNS \
        + (num_cars_top + num_cars_bot) * N_ROWS

    grid_array = {
        "short_length": short_length,
        "inner_length": inner_length,
        "long_length": long_length,
        "row_num": N_ROWS,
        "col_num": N_COLUMNS,
        "cars_left": num_cars_left,
        "cars_right": num_cars_right,
        "cars_top": num_cars_top,
        "cars_bot": num_cars_bot
    }

    sim_params = AimsunParams(sim_step=0.5, render=True)

    if render is not None:
        sim_params.render = render

    vehicles = VehicleParams()
    vehicles.add(veh_id="human", num_vehicles=tot_cars)

    env_params = EnvParams(additional_params=ADDITIONAL_ENV_PARAMS)

    tl_logic = TrafficLightParams(baseline=False)
    phases = [{
        "duration": "31",
        "minDur": "8",
        "maxDur": "45",
        "yellow": "3",
        "state": "GGGrrrGGGrrr"
    }, {
        "duration": "6",
        "minDur": "3",
        "maxDur": "6",
        "yellow": "3",
        "state": "yyyrrryyyrrr"
    }, {
        "duration": "31",
        "minDur": "8",
        "maxDur": "45",
        "yellow": "3",
        "state": "rrrGGGrrrGGG"
    }, {
        "duration": "6",
        "minDur": "3",
        "maxDur": "6",
        "yellow": "3",
        "state": "rrryyyrrryyy"
    }]
    tl_logic.add("center0", phases=phases, programID=1)
    tl_logic.add("center1", phases=phases, programID=1)
    tl_logic.add("center2", tls_type="actuated", phases=phases, programID=1)
    tl_logic.add("center3", phases=phases, programID=1)
    tl_logic.add("center4", phases=phases, programID=1)
    tl_logic.add("center5", tls_type="actuated", phases=phases, programID=1)

    additional_net_params = {
        "grid_array": grid_array,
        "speed_limit": 35,
        "horizontal_lanes": 1,
        "vertical_lanes": 1
    }
    net_params = NetParams(no_internal_links=False,
                           additional_params=additional_net_params)

    initial_config = InitialConfig(spacing='custom')

    scenario = SimpleGridScenario(name="grid-intersection",
                                  vehicles=vehicles,
                                  net_params=net_params,
                                  initial_config=initial_config,
                                  traffic_lights=tl_logic)

    env = AccelEnv(env_params, sim_params, scenario, simulator='aimsun')

    return Experiment(env)
Ejemplo n.º 6
0
def run_task(*_):
    """Implement the run_task method needed to run experiments with rllab."""
    sim_params = AimsunParams(sim_step=0.5, render=False, seed=0)

    vehicles = VehicleParams()
    vehicles.add(veh_id="rl",
                 acceleration_controller=(RLController, {}),
                 routing_controller=(ContinuousRouter, {}),
                 num_vehicles=1)
    vehicles.add(veh_id="idm",
                 acceleration_controller=(IDMController, {}),
                 routing_controller=(ContinuousRouter, {}),
                 num_vehicles=21)

    additional_env_params = {
        "target_velocity": 8,
        "ring_length": None,
        "max_accel": 1,
        "max_decel": 1
    }
    env_params = EnvParams(horizon=HORIZON,
                           additional_params=additional_env_params,
                           warmup_steps=1500)

    additional_net_params = {
        "length": 230,
        "lanes": 1,
        "speed_limit": 30,
        "resolution": 40
    }
    net_params = NetParams(additional_params=additional_net_params)

    initial_config = InitialConfig(spacing="uniform", bunching=50)

    print("XXX name", exp_tag)
    scenario = LoopScenario(exp_tag,
                            vehicles,
                            net_params,
                            initial_config=initial_config)

    env_name = "WaveAttenuationPOEnv"
    simulator = 'aimsun'
    pass_params = (env_name, sim_params, vehicles, env_params, net_params,
                   initial_config, scenario, simulator)

    env = GymEnv(env_name, record_video=False, register_params=pass_params)
    horizon = env.horizon
    env = normalize(env)

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(3, 3),
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = TRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=15000,
        max_path_length=horizon,
        n_itr=500,
        # whole_paths=True,
        discount=0.999,
        # step_size=v["step_size"],
    )
    algo.train(),
Ejemplo n.º 7
0
    # Get the flow_params object.
    module = __import__("exp_configs.non_rl", fromlist=[flags.exp_config])
    flow_params = getattr(module, flags.exp_config).flow_params

    # Get the custom callables for the runner.
    if hasattr(getattr(module, flags.exp_config), "custom_callables"):
        callables = getattr(module, flags.exp_config).custom_callables
    else:
        callables = None

    flow_params['sim'].render = not flags.no_render
    flow_params['simulator'] = 'aimsun' if flags.aimsun else 'traci'

    # If Aimsun is being called, replace SumoParams with AimsunParams.
    if flags.aimsun:
        sim_params = AimsunParams()
        sim_params.__dict__.update(flow_params['sim'].__dict__)
        flow_params['sim'] = sim_params

    # Specify an emission path if they are meant to be generated.
    if flags.gen_emission:
        flow_params['sim'].emission_path = "./data"

        # Create the flow_params object
        fp_ = flow_params['exp_tag']
        dir_ = flow_params['sim'].emission_path
        with open(os.path.join(dir_, "{}.json".format(fp_)), 'w') as outfile:
            json.dump(flow_params,
                      outfile,
                      cls=FlowParamsEncoder,
                      sort_keys=True,