Ejemplo n.º 1
0
def bottleneck_example(flow_rate, horizon, sumo_binary=None):

    if sumo_binary is None:
        sumo_binary = "sumo"
    sumo_params = SumoParams(sim_step=0.5,
                             sumo_binary=sumo_binary,
                             overtake_right=False,
                             restart_instance=True)

    vehicles = Vehicles()

    vehicles.add(veh_id="human",
                 speed_mode=25,
                 lane_change_controller=(SumoLaneChangeController, {}),
                 routing_controller=(ContinuousRouter, {}),
                 lane_change_mode=1621,
                 num_vehicles=1)

    additional_env_params = {
        "target_velocity": 40,
        "max_accel": 1,
        "max_decel": 1,
        "lane_change_duration": 5,
        "add_rl_if_exit": False,
        "disable_tb": DISABLE_TB,
        "disable_ramp_metering": DISABLE_RAMP_METER
    }
    env_params = EnvParams(horizon=horizon,
                           additional_params=additional_env_params)

    inflow = InFlows()
    inflow.add(veh_type="human",
               edge="1",
               vehsPerHour=flow_rate,
               departLane="random",
               departSpeed=10)

    traffic_lights = TrafficLights()
    if not DISABLE_TB:
        traffic_lights.add(node_id="2")
    if not DISABLE_RAMP_METER:
        traffic_lights.add(node_id="3")

    additional_net_params = {"scaling": SCALING}
    net_params = NetParams(in_flows=inflow,
                           no_internal_links=False,
                           additional_params=additional_net_params)

    initial_config = InitialConfig(spacing="random",
                                   min_gap=5,
                                   lanes_distribution=float("inf"),
                                   edges_distribution=["2", "3", "4", "5"])

    scenario = BBTollScenario(name="bay_bridge_toll",
                              generator_class=BBTollGenerator,
                              vehicles=vehicles,
                              net_params=net_params,
                              initial_config=initial_config,
                              traffic_lights=traffic_lights)

    env = BottleneckEnv(env_params, sumo_params, scenario)

    return SumoExperiment(env, scenario)
Ejemplo n.º 2
0
def bottleneck_example(flow_rate,
                       horizon,
                       restart_instance=False,
                       render=None):
    """
    Perform a simulation of vehicles on a bottleneck.

    Parameters
    ----------
    flow_rate : float
        total inflow rate of vehicles into the bottleneck
    horizon : int
        time horizon
    restart_instance: bool, optional
        whether to restart the instance upon reset
    render: bool, optional
        specifies whether to use the gui during execution

    Returns
    -------
    exp: flow.core.experiment.Experiment
        A non-rl experiment demonstrating the performance of human-driven
        vehicles on a bottleneck.
    """
    if render is None:
        render = False

    sim_params = SumoParams(sim_step=0.5,
                            render=render,
                            overtake_right=False,
                            restart_instance=restart_instance)

    vehicles = VehicleParams()

    vehicles.add(veh_id="human",
                 lane_change_controller=(SimLaneChangeController, {}),
                 routing_controller=(ContinuousRouter, {}),
                 car_following_params=SumoCarFollowingParams(speed_mode=25, ),
                 lane_change_params=SumoLaneChangeParams(
                     lane_change_mode=1621, ),
                 num_vehicles=1)

    additional_env_params = {
        "target_velocity": 40,
        "max_accel": 1,
        "max_decel": 1,
        "lane_change_duration": 5,
        "add_rl_if_exit": False,
        "disable_tb": DISABLE_TB,
        "disable_ramp_metering": DISABLE_RAMP_METER
    }
    env_params = EnvParams(horizon=horizon,
                           additional_params=additional_env_params)

    inflow = InFlows()
    inflow.add(veh_type="human",
               edge="1",
               vehsPerHour=flow_rate,
               departLane="random",
               departSpeed=10)

    traffic_lights = TrafficLightParams()
    if not DISABLE_TB:
        traffic_lights.add(node_id="2")
    if not DISABLE_RAMP_METER:
        traffic_lights.add(node_id="3")

    additional_net_params = {"scaling": SCALING, "speed_limit": 23}
    net_params = NetParams(inflows=inflow,
                           no_internal_links=False,
                           additional_params=additional_net_params)

    initial_config = InitialConfig(spacing="random",
                                   min_gap=5,
                                   lanes_distribution=float("inf"),
                                   edges_distribution=["2", "3", "4", "5"])

    scenario = BottleneckScenario(name="bay_bridge_toll",
                                  vehicles=vehicles,
                                  net_params=net_params,
                                  initial_config=initial_config,
                                  traffic_lights=traffic_lights)

    env = BottleneckEnv(env_params, sim_params, scenario)

    return BottleneckDensityExperiment(env)