def detect(nl_img, size, points): thresh = LAT(nl_img) wt = weight.bright2dark(thresh) W = np.ones((size[0], size[1]+2)) for i in range(size[0]): for j in range(1, size[1]+1): W[i][j] = wt[i][j-1] s1 = [0, points[0]] s2 = [size[0]-1, points[1]] D = fastsweeping(W, (size[0], size[1]+2), s1, s2) res = gradientFlow(D, s1, s2) return res
def detect(is_os, img, wt, size, points): temp = np.zeros(size) for j in range(size[1]): for i in range(size[0] - 1, 0, -1): if is_os[i - 1][j] > 0: break temp[i][j] = wt[i][j] W = np.ones((size[0], size[1] + 2)) for i in range(size[0]): for j in range(1, size[1] + 1): W[i][j] = temp[i][j - 1] s1 = [0, points[0]] s2 = [size[0] - 1, points[1]] D = fastsweeping(W, (size[0], size[1] + 2), s1, s2) res = gradientFlow(D, s1, s2) return res
def detect(ilm, onl_is, img, wt, size, points): flag = 0 temp = np.zeros(size) for j in range(size[1]): for i in range(1, size[0]): if ilm[i - 10][j] > 0: flag = 1 if onl_is[i][j] > 0: flag = 0 temp[i][j] = flag * wt[i][j] W = np.ones((size[0], size[1] + 2)) for i in range(size[0]): for j in range(1, size[1] + 1): W[i][j] = temp[i][j - 1] s1 = [0, points[0]] s2 = [size[0] - 1, points[1]] D = fastsweeping(W, (size[0], size[1] + 2), s1, s2) res = gradientFlow(D, s1, s2) return res