Ejemplo n.º 1
0
    def __init__(self, columns=[]):
        self._columns = columns
        dataset_axis = hist.Cat("dataset", "Primary dataset")
        mass_axis = hist.Bin("mass", r"$m_{\mu\mu}$ [GeV]", 30000, 0.25, 300)
        pt_axis = hist.Bin("pt", r"$p_{T}$ [GeV]", 30000, 0.25, 300)

        self._accumulator = processor.dict_accumulator({
            'mass':
            hist.Hist("Counts", dataset_axis, mass_axis),
            'pt':
            hist.Hist("Counts", dataset_axis, pt_axis),
            'cutflow':
            processor.defaultdict_accumulator(int),
        })
Ejemplo n.º 2
0
def tofnalhist(obj):
    if not isinstance(obj, Histogram):
        raise TypeError("cannot convert {0} to a fnal_column_analysis_tools histogram".format(type(obj).__name__))

    axes = []
    sparse_binning = {}
    dense_map = {}
    dense_shape = []
    for i, ax in enumerate(obj.axis):
        if isinstance(ax.binning, CategoryBinning):
            sparse_binning[i] = ax.binning.categories
            if ax.binning.loc_overflow.value < BinLocation.nonexistent.value:
                sparse_binning[i].insert(0, "")
            elif ax.binning.loc_overflow.value > BinLocation.nonexistent.value:
                sparse_binning[i].append("")
            new_ax = hist.Cat(ax.expression, ax.title)
            new_ax._categories = sparse_binning[i]
            axes.append(new_ax)
        elif isinstance(ax.binning, RegularBinning):
            dense_map[i] = [-numpy.inf, ..., numpy.inf, numpy.nan]
            dense_shape.append(ax.binning.num+3)
            axes.append(hist.Bin(ax.expression,
                                 ax.title,
                                 ax.binning.num,
                                 ax.binning.interval.low,
                                 ax.binning.interval.high
                                ))
        elif isinstance(ax.binning, EdgesBinning):
            dense_map[i] = [-numpy.inf, ..., numpy.inf, numpy.nan]
            dense_shape.append(ax.binning.edges.size+2)
            axes.append(hist.Bin(ax.expression,
                                 ax.title,
                                 ax.binning.edges
                                ))
        else:
            raise TypeError("unable to convert axes of type {0} to fnalhist axes".format(type(ax).__name__))


    hout = hist.Hist(obj.title, *axes)
    if isinstance(obj.counts, WeightedCounts):
        hout._init_sumw2()

    walk_shape = [len(s) for s in sparse_binning.values()]
    walk_indices = numpy.unravel_index(numpy.arange(numpy.prod(walk_shape)), walk_shape)
    for walk_index in zip(*walk_indices):
        insert_index = tuple(v[k] for k,v in zip(walk_index, sparse_binning.values()))
        extract_index = [None]*len(axes)
        for k,v in dense_map.items():
            extract_index[k] = v
        for k,v in zip(sparse_binning.keys(), walk_index):
            extract_index[k] = v
        extract_index = tuple(extract_index)
        if isinstance(obj.counts, UnweightedCounts):
            hout._sumw[insert_index] = obj.counts[extract_index]
        elif isinstance(obj.counts, WeightedCounts):
            counts = obj.counts[extract_index]
            hout._sumw[insert_index] = counts['sumw']
            hout._sumw2[insert_index] = counts['sumw2']
    
    return hout
Ejemplo n.º 3
0
    def calc(self, physics_objects, dataset_name):
        electrons = physics_objects["Electron"]

        ele = electrons[(electrons.pt > 20) & (np.abs(electrons.eta) < 2.5) &
                        (electrons.cutBased >= 4)]

        muons = physics_objects["Muon"]
        mu = muons[(muons.pt > 20) & (np.abs(muons.eta) < 2.4) &
                   (muons.tightId > 0)]

        # Just to demonstrate broadcast variables
        weights_eval = self.nonevent_data.value
        electrons['SF'] = weights_eval["eleScaleFactor_TightId_POG"](
            electrons.eta, electrons.pt)

        ee = ele.distincts()
        mm = mu.distincts()
        em = ele.cross(mu)

        dileptons = {}
        dileptons['ee'] = ee[(ee.i0.pdgId * ee.i1.pdgId == -11 * 11)
                             & (ee.i0.pt > 25)]
        dileptons['mm'] = mm[(mm.i0.pdgId * mm.i1.pdgId == -13 * 13)]
        dileptons['em'] = em[(em.i0.pdgId * em.i1.pdgId == -11 * 13)]

        channels = {}
        channels['ee'] = (ee.counts == 1) & (mu.counts == 0)
        channels['mm'] = (mm.counts == 1) & (ele.counts == 0)
        channels['em'] = (em.counts == 1) & (ele.counts == 1) & (mu.counts
                                                                 == 1)

        # dupe = np.zeros(Muon_pt.size, dtype=bool)
        tot = 0

        isRealData = True
        for channel, cut in channels.items():
            zcands = dileptons[channel][cut]
            # dupe |= cut
            tot += cut.sum()
            weight = np.array(1.)

            zMassHist = self.accumulators["zMass"]
            zMass = hist.Hist(
                "Events",
                zMassHist.dataset_axis,
                zMassHist.channel_cat_axis,
                hist.Bin("mass", "$m_{\ell\ell}$ [GeV]", 120, 0, 120),
            )

            zMass.fill(dataset=dataset_name,
                       channel=channel,
                       mass=zcands.mass.flatten(),
                       weight=weight.flatten())

            zMassHist.accumulator.add(zMass)
        return np.zeros(electrons.pt.size)
Ejemplo n.º 4
0
def compute_zpeak(dataset,
                  nElectron, 
                  Electron_pt,
                  Electron_eta,
                  Electron_phi,
                  Electron_mass,
                  Electron_cutBased,
                  Electron_pdgId,
                  Electron_pfRelIso03_all,
                  nMuon,
                  Muon_pt,
                  Muon_eta,
                  Muon_phi,
                  Muon_mass,
                  Muon_tightId,
                  Muon_pdgId,
                  Muon_pfRelIso04_all):

    global hists, non_event_data
    tic = time.time()

    electrons = JaggedCandidateArray.candidatesfromcounts(
            nElectron.array,
            pt=Electron_pt.array[0].base,
            eta=Electron_eta.array[0].base,
            phi=Electron_phi.array[0].base,
            mass=Electron_mass.array[0].base,
            cutBased=Electron_cutBased.array[0].base,
            pdgId=Electron_pdgId.array[0].base,
            pfRelIso03_all=Electron_pfRelIso03_all.array[0].base,
        )

    ele = electrons[(electrons.pt > 20) &
                    (np.abs(electrons.eta) < 2.5) &
                    (electrons.cutBased >= 4)]


    # Just to demonstrate broadcast variables
    weights_eval = non_event_data.value
    electrons['SF'] = weights_eval["eleScaleFactor_TightId_POG"](
        electrons.eta,
        electrons.pt)

    muons = JaggedCandidateArray.candidatesfromcounts(
            nMuon.values,
            pt=Muon_pt.array[0].base,
            eta=Muon_eta.array[0].base,
            phi=Muon_phi.array[0].base,
            mass=Muon_mass.array[0].base,
            tightId=Muon_tightId.array[0].base,
            pdgId=Muon_pdgId.array[0].base,
            pfRelIso04_all=Muon_pfRelIso04_all.array[0].base,
        )

    mu = muons[(muons.pt > 20) &
               (np.abs(muons.eta) < 2.4) &
               (muons.tightId > 0)]

    ee = ele.distincts()
    mm = mu.distincts()
    em = ele.cross(mu)

    dileptons = {}
    dileptons['ee'] = ee[
        (ee.i0.pdgId * ee.i1.pdgId == -11 * 11) & (ee.i0.pt > 25)]
    dileptons['mm'] = mm[(mm.i0.pdgId * mm.i1.pdgId == -13 * 13)]
    dileptons['em'] = em[(em.i0.pdgId * em.i1.pdgId == -11 * 13)]

    channels = {}
    channels['ee'] = (ee.counts == 1) & (mu.counts == 0)
    channels['mm'] = (mm.counts == 1) & (ele.counts == 0)
    channels['em'] = (em.counts == 1) & (ele.counts == 1) & (
        mu.counts == 1)

    dupe = np.zeros(Muon_pt.size, dtype=bool)
    tot = 0

    isRealData = True
    for channel, cut in channels.items():
        zcands = dileptons[channel][cut]
        dupe |= cut
        tot += cut.sum()
        weight = np.array(1.)

        zMassHist = hists["zMass"]["accumulator"]

        zMass = hist.Hist("Events", hists["zMass"]["dataset_axis"],
                          hists["zMass"]["channel_cat_axis"],
                          hist.Bin("mass", "$m_{\ell\ell}$ [GeV]", 120, 0, 120),
                          )

        zMass.fill(dataset=dataset[0], channel=channel,
                   mass=zcands.mass.flatten(),
                   weight=weight.flatten())
        zMassHist.add(zMass)


    dt = time.time() - tic
    return pd.Series(np.ones(Electron_pt.size) * dt/Electron_pt.size)
Ejemplo n.º 5
0
    def addInPlace(self, val1, val2):
        val1 += val2
        return val1


# Create a histogram accumulator for ZMass
hists = OrderedDict()

dataset_axis = hist.Cat("dataset", "DAS name")
channel_cat_axis = hist.Cat("channel", "dilepton flavor")

hists['zMass'] = {
    "accumulator":
        spark.sparkContext.accumulator(
            hist.Hist("Events", dataset_axis, channel_cat_axis,
                      hist.Bin("mass", "$m_{\ell\ell}$ [GeV]", 120, 0, 120),
                      ),
            FLNAL_Hist_AccumulatorParam()
        ),
    "dataset_axis": hist.Cat("dataset", "DAS name"),
    "channel_cat_axis": hist.Cat("channel", "dilepton flavor")
}

# Create a broadcast variable for the non-event data
weightsext = lookup_tools.extractor()
correctionDescriptions = open("newCorrectionFiles.txt").readlines()
weightsext.add_weight_sets(correctionDescriptions)
weightsext.finalize()
weights_eval = weightsext.make_evaluator()

non_event_data = spark.sparkContext.broadcast(weights_eval)
Ejemplo n.º 6
0
def test_hist():
    counts, test_eta, test_pt = dummy_jagged_eta_pt()

    h_nothing = hist.Hist("empty inside")
    assert h_nothing.sparse_dim() == h_nothing.dense_dim() == 0
    assert h_nothing.values() == {}

    h_regular_bins = hist.Hist("regular joe", hist.Bin("x", "x", 20, 0, 200),
                               hist.Bin("y", "why", 20, -3, 3))
    h_regular_bins.fill(x=test_pt, y=test_eta)
    nentries = np.sum(counts)
    assert h_regular_bins.sum(
        "x", "y",
        overflow='all').values(sumw2=True)[()] == (nentries, nentries)
    # bin x=2, y=10 (when overflow removed)
    count_some_bin = np.sum((test_pt >= 20.) & (test_pt < 30.)
                            & (test_eta >= 0.) & (test_eta < 0.3))
    assert h_regular_bins.project("x",
                                  slice(20,
                                        30)).values()[()][10] == count_some_bin
    assert h_regular_bins.project("y",
                                  slice(0,
                                        0.3)).values()[()][2] == count_some_bin

    h_reduced = h_regular_bins[10:, -.6:]
    # bin x=1, y=2
    assert h_reduced.project("x", slice(20,
                                        30)).values()[()][2] == count_some_bin
    assert h_reduced.project("y", slice(0,
                                        0.3)).values()[()][1] == count_some_bin
    h_reduced.fill(x=23, y=0.1)
    assert h_reduced.project("x",
                             slice(20,
                                   30)).values()[()][2] == count_some_bin + 1
    assert h_reduced.project("y",
                             slice(0,
                                   0.3)).values()[()][1] == count_some_bin + 1

    animal = hist.Cat("animal", "type of animal")
    vocalization = hist.Cat("vocalization",
                            "onomatopoiea is that how you spell it?")
    h_cat_bins = hist.Hist("I like cats", animal, vocalization)
    h_cat_bins.fill(animal="cat", vocalization="meow", weight=2.)
    h_cat_bins.fill(animal="dog",
                    vocalization="meow",
                    weight=np.array([-1., -1., -5.]))
    h_cat_bins.fill(animal="dog", vocalization="woof", weight=100.)
    h_cat_bins.fill(animal="dog", vocalization="ruff")
    assert h_cat_bins.values()[("cat", "meow")] == 2.
    assert h_cat_bins.values(sumw2=True)[("dog", "meow")] == (-7., 27.)
    assert h_cat_bins.project(
        "vocalization",
        ["woof", "ruff"]).values(sumw2=True)[("dog", )] == (101., 10001.)

    height = hist.Bin("height", "height [m]", 10, 0, 5)
    h_mascots_1 = hist.Hist(
        "fermi mascot showdown",
        animal,
        vocalization,
        height,
        # weight is a reserved keyword
        hist.Bin("mass", "weight (g=9.81m/s**2) [kg]",
                 np.power(10.,
                          np.arange(5) - 1)),
    )
    adult_bison_h = np.random.normal(loc=2.5, scale=0.2, size=40)
    adult_bison_w = np.random.normal(loc=700, scale=100, size=40)
    h_mascots_1.fill(animal="bison",
                     vocalization="huff",
                     height=adult_bison_h,
                     mass=adult_bison_w)
    goose_h = np.random.normal(loc=0.4, scale=0.05, size=1000)
    goose_w = np.random.normal(loc=7, scale=1, size=1000)
    h_mascots_1.fill(animal="goose",
                     vocalization="honk",
                     height=goose_h,
                     mass=goose_w)
    crane_h = np.random.normal(loc=1, scale=0.05, size=4)
    crane_w = np.random.normal(loc=10, scale=1, size=4)
    h_mascots_1.fill(animal="crane",
                     vocalization="none",
                     height=crane_h,
                     mass=crane_w)

    h_mascots_2 = h_mascots_1.copy()
    h_mascots_2.clear()
    baby_bison_h = np.random.normal(loc=.5, scale=0.1, size=20)
    baby_bison_w = np.random.normal(loc=200, scale=10, size=20)
    baby_bison_cutefactor = 2.5 * np.ones_like(baby_bison_w)
    h_mascots_2.fill(animal="bison",
                     vocalization="baa",
                     height=baby_bison_h,
                     mass=baby_bison_w,
                     weight=baby_bison_cutefactor)
    h_mascots_2.fill(animal="fox", vocalization="none", height=1., mass=30.)

    h_mascots = h_mascots_1 + h_mascots_2
    assert h_mascots.project("vocalization",
                             "h*").sum("height", "mass",
                                       "animal").values()[()] == 1040.

    species_class = hist.Cat("species_class",
                             "where the subphylum is vertibrates")
    classes = {
        'birds': ['goose', 'crane'],
        'mammals': ['bison', 'fox'],
    }
    h_species = h_mascots.group(species_class, "animal", classes)

    assert set(h_species.project("vocalization").values().keys()) == set([
        ('birds', ), ('mammals', )
    ])
    nbirds_bin = np.sum((goose_h >= 0.5) & (goose_h < 1) & (goose_w > 10)
                        & (goose_w < 100))
    nbirds_bin += np.sum((crane_h >= 0.5) & (crane_h < 1) & (crane_w > 10)
                         & (crane_w < 100))
    assert h_species.project("vocalization").values()[(
        'birds', )][1, 2] == nbirds_bin
    tally = h_species.sum("mass", "height", "vocalization").values()
    assert tally[('birds', )] == 1004.
    assert tally[('mammals', )] == 91.

    h_species.scale({"honk": 0.1, "huff": 0.9}, axis="vocalization")
    h_species.scale(5.)
    tally = h_species.sum("mass", height, vocalization).values(sumw2=True)
    assert tally[('birds', )] == (520., 350.)
    assert tally[('mammals', )] == (435.,
                                    25 * (40 * (0.9**2) + 20 * (2.5**2) + 1))

    assert h_species.axis("vocalization") is vocalization
    assert h_species.axis("height") is height
    assert h_species.project("vocalization", "h*").axis("height") is height

    tall_class = hist.Cat("tall_class", "species class (species above 1m)")
    mapping = {
        'birds': (['goose', 'crane'], slice(1., None)),
        'mammals': (['bison', 'fox'], slice(1., None)),
    }
    h_tall = h_mascots.group(tall_class, (animal, height), mapping)
    tall_bird_count = np.sum(goose_h >= 1.) + np.sum(crane_h >= 1)
    assert h_tall.sum("mass",
                      "vocalization").values()[('birds', )] == tall_bird_count
    tall_mammal_count = np.sum(adult_bison_h >= 1.) + np.sum(
        baby_bison_h >= 1) + 1
    assert h_tall.sum(
        "mass", "vocalization").values()[('mammals', )] == tall_mammal_count
Ejemplo n.º 7
0
#!/usr/bin/env python
import uproot, uproot_methods
import numpy as np
np.seterr(divide='ignore', invalid='ignore')
from Builder import Initialize
from fnal_column_analysis_tools import hist

hists = {
    'recoil': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("recoil","Hadronic Recoil",[250.0, 280.0, 310.0, 340.0, 370.0, 400.0, 430.0, 470.0, 510.0, 550.0, 590.0, 640.0, 690.0, 740.0, 790.0, 840.0, 900.0, 960.0, 1020.0, 1090.0, 1160.0, 1250.0])),
    'mindphi': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("mindphi","Min dPhi(MET,AK4s)",15,0,6.28)),
    'j1pt': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("j1pt","AK4 Leading Jet Pt",50,30,500)),
    'fj1pt': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("fj1pt","AK15 Leading Jet Pt",50,200,700)),
    'njets': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("njets","AK4 Number of Jets",6,0,5)),
    'nfjets': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("nfjets","AK15 Number of Jets",4,0,3)),
    'fjmass': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("fjmass","AK15 Jet Mass",50,20,250)),
    'TvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("TvsQCD","TvsQCD",15,0,1)),
    'WvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("WvsQCD","WvsQCD",15,0,1)),
    'ZvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("ZvsQCD","ZvsQCD",15,0,1)),
    'VvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("VvsQCD","VvsQCD",15,0,1)),
    'ZHbbvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("ZHbbvsQCD","ZHbbvsQCD",15,0,1)),
    'ZHccvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("ZHccvsQCD","ZHccvsQCD",15,0,1)),
    'WcqvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("WcqvsQCD","WcqvsQCD",15,0,1)),
    'WqqvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("WqqvsQCD","WqqvsQCD",15,0,1)),
    'ZbbvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("ZbbvsQCD","ZbbvsQCD",15,0,1)),
    'ZccvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("ZccvsQCD","ZccvsQCD",15,0,1)),
    'ZqqvsQCD': hist.Hist("Events", hist.Cat("dataset", "Primary dataset"), hist.Cat("region", "Region"), hist.Bin("ZqqvsQCD","ZqqvsQCD",15,0,1))
}


samples = {
    "iszeroL":('ZJets','WJets','DY','TT_TuneCUETP8M2T4','ST_t-channel','ST_tW','WW_TuneCUETP8M1','WZ_TuneCUETP8M1','ZZ_TuneCUETP8M1','QCD','VH_HToBB','WminusH','WplusH','ttHTobb','GluGluHToBB','VBFHToBB','MET'),
Ejemplo n.º 8
0
jetmass_coarse = hist.Bin("ak8_msd", "Jet $m_{sd}$", [40, 100, 140, 200])
jetrho = hist.Bin("jetrho", r"Jet $\rho$", 13, -6, -2.1)
doubleb = hist.Bin("ak8_deepdoubleb", "Double-b", 20, 0., 1)
doublec = hist.Bin("ak8_deepdoublec", "Double-c", 20, 0., 1.)
doublecvb = hist.Bin("ak8_deepdoublecvb", "Double-cvb", 20, 0., 1.)
doubleb_coarse = [1., 0.93, 0.92, 0.89, 0.85, 0.7]
doubleb_coarse = hist.Bin("ak8_deepdoubleb", "Double-b", doubleb_coarse[::-1])
doublec_coarse = [0.87, 0.84, 0.83, 0.79, 0.69, 0.58]
doublec_coarse = hist.Bin("ak8_deepdoublec", "Double-c", doublec_coarse[::-1])
doublecvb_coarse = [0.93, 0.91, 0.86, 0.76, 0.6, 0.17, 0.12]
doublecvb_coarse = hist.Bin("ak8_deepdoublecvb", "Double-cvb", doublecvb_coarse[::-1])
n2ddt_coarse = hist.Bin("ak8_N2sdb1_ddt", "N2 DDT", [0.])


hists = {}
hists['sumw'] = hist.Hist("sumw", dataset, systematic, hist.Bin("sumw", "Weight value", [0.]))
hists['hjetpt'] = hist.Hist("Events", dataset, gencat, systematic, hist.Bin("ak8_pt", "Jet $p_T$", 100, 300, 1300), dtype='f')
hists['hjetpt_sr'] = hist.Hist("Events", dataset, gencat, systematic, hist.Bin("ak8_pt", "Jet $p_T$", 100, 300, 1300), dtype='f')
#hists['htagtensor'] = hist.Hist("Events", dataset, gencat, jetpt_coarse, n2ddt_coarse, jetmass_coarse, doubleb, doublec, doublecvb, dtype='f')
hists['hsculpt'] = hist.Hist("Events", dataset, gencat, systematic,
                             jetpt, jetmass, doubleb_coarse, doublec_coarse, doublecvb_coarse, dtype='f')
hists['hsculpt_sr'] = hist.Hist("Events", dataset, gencat, systematic,
                                jetpt, jetmass, doubleb_coarse, doublec_coarse, doublecvb_coarse, dtype='f')

hists['pfmet_nminus1_sr'] = hist.Hist("Events", dataset, gencat, systematic,
                                      jetpt_coarse, jetmass_coarse, hist.Bin("pfmet", r"PF $p_{T}^{miss}$", 40, 0, 200))
hists['opposite_ak8_n3sdb1_sr'] = hist.Hist("Events", dataset, gencat, systematic,
                                            jetpt_coarse, jetmass_coarse,
                                            hist.Bin("opposite_ak8_n3sdb1", r"Jet $N_{3,sd}^{\beta=1}$", 40, 0.5, 3))
hists['opposite_ak8_tau32_sr'] = hist.Hist("Events", dataset, gencat, systematic,
                                           jetpt_coarse, jetmass_coarse,
Ejemplo n.º 9
0
    def __init__(self, corrections, debug=False):
        self._corrections = corrections
        self._debug = debug

        dataset_axis = hist.Cat("dataset", "Primary dataset")
        gencat_axis = hist.Bin("AK8Puppijet0_isHadronicV", "V matching index",
                               [0, 1, 2, 3, 9, 10, 11])
        jetpt_axis = hist.Bin("AK8Puppijet0_pt", r"Jet $p_T$",
                              [450, 500, 550, 600, 675, 800, 1200])
        jetmass_axis = hist.Bin("AK8Puppijet0_msd", r"Jet $m_{sd}$", 23, 40,
                                201)
        jetpt_coarse_axis = hist.Bin("AK8Puppijet0_pt", r"Jet $p_T$",
                                     [450, 1200])
        jetmass_coarse_axis = hist.Bin("AK8Puppijet0_msd", r"Jet $m_{sd}$",
                                       [40, 103, 152, 201])
        jetrho_axis = hist.Bin("ak8jet_rho", r"Jet $\rho$", 13, -6, -2.1)
        doubleb_axis = hist.Bin("AK8Puppijet0_deepdoubleb", "Double-b", 20, 0.,
                                1)
        doublec_axis = hist.Bin("AK8Puppijet0_deepdoublec", "Double-c", 20, 0.,
                                1.)
        doublecvb_axis = hist.Bin("AK8Puppijet0_deepdoublecvb", "Double-cvb",
                                  20, 0., 1.)
        doubleb_wps = [1., 0.9, 0.89, 0.85, 0.7]
        doubleb_coarse_axis = hist.Bin("AK8Puppijet0_deepdoubleb", "Double-b",
                                       doubleb_wps[::-1])
        doublec_wps = [0.87, 0.84, 0.83, 0.79, 0.69]
        doublec_coarse_axis = hist.Bin("AK8Puppijet0_deepdoublec", "Double-c",
                                       doublec_wps[::-1])
        doublecvb_wps = [0.93, 0.91, 0.6, 0.2, 0.17]
        doublecvb_coarse_axis = hist.Bin("AK8Puppijet0_deepdoublecvb",
                                         "Double-cvb", doublecvb_wps[::-1])

        hists = processor.dict_accumulator()
        hist.Hist.DEFAULT_DTYPE = 'f'  # save some space by keeping float bin counts instead of double
        hists['sumw'] = processor.dict_accumulator(
        )  # the defaultdict_accumulator is broken :<
        hists['jetpt_preselection'] = hist.Hist(
            "Events",
            dataset_axis,
            gencat_axis,
            hist.Bin("AK8Puppijet0_pt", "Jet $p_T$", 100, 300, 1300),
        )
        hists['jeteta_preselection'] = hist.Hist(
            "Events",
            dataset_axis,
            gencat_axis,
            hist.Bin("AK8Puppijet0_eta", r"Jet $\eta$", 50, -3, 3),
        )
        hists['jetpt_muoncontrol'] = hist.Hist(
            "Events",
            dataset_axis,
            gencat_axis,
            hist.Bin("AK8Puppijet0_pt", "Jet $p_T$", 100, 300, 1300),
        )
        hists['muonpt_muoncontrol'] = hist.Hist(
            "Events",
            dataset_axis,
            gencat_axis,
            hist.Bin("vmuoLoose0_pt", "Leading muon $p_T$", 100, 0, 1000),
        )
        hists['muoneta_muoncontrol'] = hist.Hist(
            "Events",
            dataset_axis,
            gencat_axis,
            hist.Bin("vmuoLoose0_eta", r"Leading muon $\eta$", 50, -3, 3),
        )
        hists['jetpt_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis,
            hist.Bin("AK8Puppijet0_pt", "Jet $p_T$", 100, 300, 1300))
        hists['sculpt_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetpt_axis, jetmass_axis,
            doubleb_coarse_axis, doublec_coarse_axis, doublecvb_coarse_axis)
        hists['tagtensor_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetpt_coarse_axis,
            jetmass_coarse_axis, doubleb_axis, doublec_axis, doublecvb_axis)
        hists['opposite_ak8_n3sdb1_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetpt_coarse_axis,
            jetmass_coarse_axis,
            hist.Bin("opposite_ak8_n3sdb1", r"Jet $N_{3,sd}^{\beta=1}$", 40,
                     0.5, 3))
        hists['opposite_ak8_tau32_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetpt_coarse_axis,
            jetmass_coarse_axis,
            hist.Bin("opposite_ak8_tau32", r"Jet $\tau_{32}$", 40, 0, 1))
        hists['opposite_ak8_msd_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetpt_coarse_axis,
            jetmass_coarse_axis,
            hist.Bin("opposite_ak8_msd", r"Jet $\m_{sd}$", 40, 50, 200))
        hists['njets_ak4_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetpt_coarse_axis,
            jetmass_coarse_axis,
            hist.Bin("nAK4PuppijetsPt30", "Number AK4 Jets", 8, 0, 8))

        hists['nminus1_antiak4btagMediumOppHem_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetpt_coarse_axis,
            jetmass_coarse_axis,
            hist.Bin("opposite_ak4_leadingDeepCSV",
                     r"Max(DeepCSV) (of $\leq4$ leading)", 40, 0, 1))
        hists['nminus1_pfmet_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetpt_coarse_axis,
            jetmass_coarse_axis, doubleb_coarse_axis,
            hist.Bin("pfmet", r"PF $p_{T}^{miss}$", 40, 0, 200))
        hists['nminus1_n2ddtPass_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetmass_coarse_axis,
            doubleb_coarse_axis,
            hist.Bin("ak8jet_n2ddt", r"Jet $N_{2,DDT}^{\beta=1}$", 40, -.25,
                     .25))
        hists['nminus1_ak4btagMediumDR08_muoncontrol'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetmass_coarse_axis,
            doubleb_coarse_axis,
            hist.Bin("ak4_leadingDeepCSV_dR08",
                     r"Max(DeepCSV) ($\DeltaR(ak4, ak8)>0.8$)", 40, 0, 1))
        hists['nminus1_muonDphiAK8_muoncontrol'] = hist.Hist(
            "Events", dataset_axis, gencat_axis, jetmass_coarse_axis,
            doubleb_coarse_axis,
            hist.Bin("muon_dphi", r"$\Delta\phi(\mu, j)$", 40, 0, np.pi))
        hists['templates_signalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis,
            hist.Cat("systematic", "Systematic"), jetpt_axis, jetmass_axis,
            doubleb_coarse_axis)
        hists['templates_muoncontrol'] = hist.Hist(
            "Events", dataset_axis, gencat_axis,
            hist.Cat("systematic", "Systematic"), jetpt_axis, jetmass_axis,
            doubleb_coarse_axis)
        hists['templates_hCCsignalregion'] = hist.Hist(
            "Events", dataset_axis, gencat_axis,
            hist.Cat("systematic", "Systematic"), jetpt_axis, jetmass_axis,
            doublec_coarse_axis)
        hists['templates_hCCmuoncontrol'] = hist.Hist(
            "Events", dataset_axis, gencat_axis,
            hist.Cat("systematic", "Systematic"), jetpt_axis, jetmass_axis,
            doublec_coarse_axis)
        self._accumulator = hists