Ejemplo n.º 1
0
def predict():
    form = PredictForm()
    value = randint(2000, 5000)
    if form.validate_on_submit():
        flash(f"Prediction: {value}", "success")
        return redirect(url_for("home"))
    return render_template("predict.html", title="Predict", form=form)
Ejemplo n.º 2
0
def bangalore():
    form = PredictForm()
    name = getareanames()
    if form.validate_on_submit():
        return redirect(url_for('test1'))
    return render_template('bangalore.html',
                           form=form,
                           data=name,
                           title='Home')
Ejemplo n.º 3
0
def predictOutput():
    form = PredictForm()
    if form.validate_on_submit():
        habitants = form.habitants.data
        csvText = form.csvText.data

        ht = lstmPredict(csvText, habitants)
        return render_template("pages/predictOutput.html",
                               out=habitants,
                               csvText=csvText,
                               ht=ht)
    return render_template("pages/predictOutput.html")
Ejemplo n.º 4
0
def predict():
    form = PredictForm()
    if form.validate_on_submit():
        sex,exang,ca,cp,restecg,slope,thal = form.data['sex'],\
            form.data['exang'],\
            form.data['ca'],\
            form.data['cp'],\
            form.data['restecg'],\
            form.data['slope'],\
            form.data['thal']
        flash("Have Heart Disease" if prediction(sex,exang,ca,cp,restecg,slope,thal)\
            else "No Heart Disease" ,'success')
    return render_template('predict.html',
                           title='predict the heart disease',
                           form=form)
Ejemplo n.º 5
0
def linear():
    form = PredictForm()
    if form.validate_on_submit():
        stock = request.form["stockTicker"]
        days = int(request.form["daysToPredict"])
        stock_csv(stock)
        prediction = predictPrice(stock, days)
        if (days == 1):
            flash("Linear Regression | " + str(stock) + "'s High in " +
                  str(days) + " day will be: $" +
                  str(round(prediction[0], 2)) + ".")
        else:
            flash("Linear Regression | " + str(stock) + "'s High in " +
                  str(days) + " days will be: $" +
                  str(round(prediction[0], 2)) + ".")
    return render_template('linear.html', title='Linear Regression', form=form)
Ejemplo n.º 6
0
def home():
    form = PredictForm()
    if form.validate_on_submit():
        cleaned = pattern.sub(' ', form.example.data.lower())
        new_examples = [cleaned]
        predictions, probs = classifier.predict(new_examples)
        return render_template('result.html',
                               max_coef=classifier.get_max_coefficient(),
                               words=classifier.get_coefficients_for(
                                   new_examples[0]),
                               example=new_examples[0],
                               pos_prob=probs[1],
                               neg_prob=probs[0],
                               form=TrainForm())

    return render_template('index.html', form=form)
Ejemplo n.º 7
0
def home():
    form = PredictForm()
    if form.validate_on_submit():
        cleaned = pattern.sub(' ', form.example.data.lower())
        new_examples = [cleaned]
        predictions, probs = classifier.predict(new_examples)
        return render_template('result.html',
                            max_coef = classifier.get_max_coefficient(),
                            words = classifier.get_coefficients_for(new_examples[0]),
                            example = new_examples[0],
                            pos_prob = probs[1],
                            neg_prob = probs[0],
                            form = TrainForm())

    return render_template('index.html',
        form = form)
Ejemplo n.º 8
0
def indexfunc():
    form=PredictForm()
    model = keras.models.load_model("hospital_model.h5")
    transformer = joblib.load("data_transformer.joblib")
    prediction_text='Result will appear here...'
    if form.validate_on_submit():
        newdict={
                'age': [str(form.age.data)],
                'time_in_hospital': [int(form.time_in_hospital.data)],
                'num_medications': [int(form.num_medications.data)],
                'number_diagnoses': [int(form.number_diagnoses.data)],
                'metformin':[str(form.metformin.data)],
                'chlorpropamide':[str(form.chlorpropamide.data)],
                'glimepiride':[str(form.glimepiride.data)],
                'tolazamide':[str(form.tolazamide.data)],
                'insulin':[str(form.insulin.data)],
                'race':[str(form.race.data)],
                'admission_type_id':[int(form.admission_type_id.data)],
                'admission_source_id':[int(form.admission_source_id.data)],
                'max_glu_serum':[str(form.max_glu_serum.data)],
                'A1Cresult':[str(form.A1Cresult.data)]
            }
        newds=pd.DataFrame(newdict)

        prediction = model.predict(transformer.transform(newds))

        max_index_col = np.argmax(prediction, axis=1)

        if max_index_col==0:
            prediction_text=' The Patient will be readmitted more than 30 Times '

        if max_index_col==1:
            prediction_text=' The Patient will be readmitted less than 30 Times '

        if max_index_col==2:
            prediction_text=' The Patient will be not be readmitted '
   
    return render_template('regression.html', form=form,prediction_text=prediction_text)