Ejemplo n.º 1
0
def fourier_basis(t, freq):
    """
    Create a design matrix with columns given by the Fourier
    basis with a given set of frequencies.

    Parameters
    ----------

    t : np.ndarray
        An array of np.float values at which to evaluate
        the design. Common examples would be the acquisition
        times of an fMRI image.

    freq : [float]
        Frequencies for the terms in the Fourier basis.

    Returns
    -------

    X : np.ndarray

    Examples
    --------

    >>> t = np.linspace(0,50,101)
    >>> drift = fourier_basis(t, np.array([4,6,8]))
    >>> drift.shape
    (101, 6)
    >>> 

    """
    tval = formula.make_recarray(t, ['t'])
    f = fourier_basis_sym(freq)
    return f.design(tval, return_float=True)
Ejemplo n.º 2
0
def natural_spline(t, knots=None, order=3, intercept=True):
    """
    Create a design matrix with columns given by a
    natural spline of a given order and a specified set of knots.

    Parameters
    ----------
    t : np.array

    knots : None or sequence, optional
       Sequence of float.  Default None (same as empty list)

    order : int, optional
       Order of the spline. Defaults to a cubic (==3)

    intercept : bool, optional
       If True, include a constant function in the natural
       spline. Default is False

    Returns
    -------

    X : np.ndarray

    Examples
    --------

    >>> t = np.linspace(0,50,101)
    >>> drift = natural_spline(t, knots=[10,20,30,40])
    >>> drift.shape
    (101, 8)
    >>> 

    """
    tval = formula.make_recarray(t, ['t'])
    t = formula.Term('t')
    f = formula.natural_spline(t, knots=knots, order=order, 
                               intercept=intercept)
    return f.design(tval, return_float=True)
Ejemplo n.º 3
0
def event_design(event_spec, t, order=2, hrfs=[glover]):
    """
    Create a design matrix for a GLM analysis based
    on an event specification, evaluating
    it a sequence of time values. Each column
    in the design matrix will be convolved with each HRF in hrfs.

    Parameters
    ----------

    event_spec : np.recarray
        A recarray having at least a field named 'time' signifying
        the event time, and all other fields will be treated as factors
        in an ANOVA-type model.

    t : np.ndarray
        An array of np.float values at which to evaluate
        the design. Common examples would be the acquisition
        times of an fMRI image.

    order : int
        The highest order interaction to be considered in
        constructing the contrast matrices.

    hrfs : seq
        A sequence of (symbolic) HRF that will be convolved
        with each event. If empty, glover is used.

    Outputs 
    -------
    
    X : np.ndarray
        The design matrix with X.shape[0] == t.shape[0]. The number
        of columns will depend on the other fields of event_spec.

    contrasts : dict
        Dictionary of contrasts that is expected to be of interest
        from the event specification. For each interaction / effect
        up to a given order will be returned. Also, a contrast
        is generated for each interaction / effect for each HRF
        specified in hrfs.
    
    """

    fields = list(event_spec.dtype.names)
    if 'time' not in fields:
        raise ValueError('expecting a field called "time"')

    fields.pop(fields.index('time'))
    e_factors = [formula.Factor(n, np.unique(event_spec[n])) for n in fields]
    
    e_formula = np.product(e_factors)

    e_contrasts = {}
    if len(e_factors) > 1:
        for i in range(1, order+1):
            for comb in combinations(zip(fields, e_factors), i):
                names = [c[0] for c in comb]
                fs = [c[1].main_effect for c in comb]
                e_contrasts[sjoin(names, ':')] = np.product(fs).design(event_spec)

    e_contrasts['constant'] = formula.I.design(event_spec)

    # Design and contrasts in event space
    # TODO: make it so I don't have to call design twice here
    # to get both the contrasts and the e_X matrix as a recarray

    e_X = e_formula.design(event_spec)
    e_dtype = e_formula.dtype

    # Now construct the design in time space

    t_terms = []
    t_contrasts = {}
    for l, h in enumerate(hrfs):
        t_terms += [events(event_spec['time'], \
            amplitudes=e_X[n], f=h) for i, n in enumerate(e_dtype.names)]
        for n, c in e_contrasts.items():
            t_contrasts["%s_%d" % (n, l)] = formula.Formula([ \
                 events(event_spec['time'], amplitudes=c[nn], f=h) for i, nn in enumerate(c.dtype.names)])
    t_formula = formula.Formula(t_terms)
    
    tval = formula.make_recarray(t, ['t'])
    X_t, c_t = t_formula.design(tval, contrasts=t_contrasts)
    return X_t, c_t