Ejemplo n.º 1
0
def if_A3(F):
    # (!B->!A) -> ((!B->A)->B)
    # ________    ____________
    #    F1            F2

    try:
        F1 = F.left
        F2 = F.right

        B = F2.right
        A = F2.left.right

        nB = notFormula(B)
        nA = notFormula(A)

        if F1.left == nB and F1.right == nA and \
            F2 == Node(Node(nB, A), B):

            return True

        a3 = A3(A, B)

        if a3 == F:
            return True

    except:
        # F is variable or does not have left or right Node
        pass

    return False
Ejemplo n.º 2
0
def build_deduction(hypoth, F, G, proof=[]):
    """
        hypoth, F |- G => hypoth |- F->G

        proof = [F1, ..., Fn-1] + [G]
        F = Fn
    """

    if len(proof) == 0 or proof[-1] != G:
        proof.append(G)

    res = []

    P_index = -1

    for p in proof:
        P_index += 1

        if p == F:
            res.extend(build_TL(F))

        elif axiom.if_Axiom(p) or p in hypoth:

            # A1 for F, G
            F1 = axiom.A1(p, F)
            # MP for F and F1
            F2 = axiom.MP(p, F1)

            res.extend([F1, F2])

        else:
            # smth weird happens here
            _str = p.msg

            if not _str.startswith("MP for"):
                continue

            _str = _str.replace("MP for", "")

            sFr, sFs = _str.split(',')
            Fr = formula.buildFormula(formula.prepareString(sFr))
            Fs = formula.buildFormula(formula.prepareString(sFs))

            # A2 for G, Fr, F
            F1 = axiom.A2(F, Fr, p)

            # MP for F1, G->Fs
            F2 = axiom.MP(Node(F, Fs), F1)

            # MP for G->Fr, F2
            F3 = axiom.MP(Node(F, Fr), F2)

            res.extend([F1, F2, F3])

    return res
Ejemplo n.º 3
0
 def _create_varfunc(self, quant, name):
     assert quant != None
     if not self.debug and self.rename:
         name = 'VARFUNC'
     else:
         name = name.split(':')[0]
     node = Node(NodeType.VARFUNC, name)
     node.quant = quant
     quant.vfunc.append(node)
     self.graph.append(node)
     return node
Ejemplo n.º 4
0
def A1(F, G):
    """
        F -> (G -> F)   axiom (1)
    """

    if F is None or G is None:
        return None

    tree = Node(G, F)
    tree = Node(F, tree)

    tree.msg = "A1 for " + str(F) + ", " + str(G)

    return tree
Ejemplo n.º 5
0
def T3(F, G):
    """
        !F -> (F->G)
    """

    if type(F) is Node:
        nf = Node(F.left, F.right, _not=not F._not)
    else:
        nf = Variable(F.symbol, _not=not F._not)

    fg = Node(F, G)

    msg = "T3 for " + str(F) + ", " + str(G)

    return Node(nf, fg, msg=msg)
Ejemplo n.º 6
0
def build_TL(F):
    """
        Make L theorem with F

    :param F: Variable or Node
    :return: list of formal conclusions to get F->F
    """

    ff = Node(F, F)
    # A2 for F, F->F, F
    F1 = axiom.A2(F, ff, F)

    # A1 for F, F->F
    F2 = axiom.A1(F, ff)

    # MP for F1 and F2
    F3 = axiom.MP(F2, F1)

    # A1 for F and F
    F4 = axiom.A1(F, F)

    # MP for F3, F4
    F5 = axiom.MP(F3, F4)

    return [F1, F2, F3, F4, F5]
Ejemplo n.º 7
0
def T6(F, G):
    """
        F -> (!G -> !(F->G) )
    """

    if type(G) is Node:
        ng = Node(G.left, G.right, _not=not G._not)
    else:
        ng = Variable(G.symbol, _not=not G._not)

    nFG = Node(F, G, _not=True)

    f2 = Node(ng, nFG)

    msg = "T6 for " + str(F) + ", " + str(G)

    return Node(F, f2, msg=msg)
Ejemplo n.º 8
0
    def convert(self, formula):
        '''Convert tupled formula parse tree into graph

        Parameters
        ----------
        formula : tuple
            Tupled tree representation of a formula

        Returns
        -------
        Graph
            DAG representation of a formula
        '''
        self.scope = Scope()
        self.graph = []
        self.root = None
        self.tail = None
        Node.reset_id()
        append_infer_node = False

        if isinstance(formula,
                      tuple) and len(formula) == 2 and formula[0] == '|-:c':
            formula = formula[1]
            append_infer_node = True
            while isinstance(formula, tuple) and formula[0] == '!!':
                formula = formula[2]

        node = self._formula_to_graph(formula)
        if self.tail is not None:
            self.tail.outgoing.append(node)
            node.incoming.append(self.tail)
        else:
            self.root = node

        if append_infer_node:
            node = Node(NodeType.CONSTFUNC, '|-:c')
            self.graph.append(node)
            node.outgoing.append(self.root)
            self.root.incoming.append(node)
            self.root = node

        if not self.debug:
            self._finalize_graph()

        return self.graph
Ejemplo n.º 9
0
def T7(F, G):
    """
        (F->G) -> ( (!F->G) ->G )
    """

    if type(F) is Node:
        nf = Node(F.left, F.right, _not=not F._not)
    else:
        nf = Variable(F.symbol, _not=not F._not)

    fg = Node(F, G)

    nf_g = Node(nf, G)
    nfg_G = Node(nf_g, G)  # (!F->G)->G

    msg = "T7 for " + str(F) + ", " + str(G)

    return Node(fg, nfg_G, msg=msg)
Ejemplo n.º 10
0
    def convert(self, formula):
        '''Convert tupled formula parse tree into tree

        Parameters
        ----------
        formula : tuple
            Tupled tree representation of a formula

        Returns
        -------
        Graph
            tree representation of a formula
        '''
        self.graph = []
        Node.reset_id()

        node = self._formula_to_tree(formula)

        return self.graph
Ejemplo n.º 11
0
def A3(F, G):
    """
        (!G -> !F) -> ( (!G -> F) -> G )    axiom (3)
    """

    try:
        notG = notFormula(G)
        notF = notFormula(F)

        ngnf = Node(notG, notF)

        ngf = Node(notG, F)

        ngf_g = Node(ngf, G)

        msg = "A3 for " + str(F) + ", " + str(G)

        return Node(ngnf, ngf_g, msg=msg)
    except:
        return None
Ejemplo n.º 12
0
def deduction(hypothesis, tree):
    """
        Gamma, F |- G   =>  Gamma |- F->G

        hypothesis is a node
    """

    msg = "Deduction theorem for " + str(hypothesis) + ", " + str(tree)

    new_tree = Node(hypothesis, tree, msg=msg)
    return new_tree
Ejemplo n.º 13
0
def T5(F, G):
    """
        (F->G) -> (!G -> !F)
    """

    if type(F) is Node:
        nf = Node(F.left, F.right, _not=not F._not)
    else:
        nf = Variable(F.symbol, _not=not F._not)

    if type(G) is Node:
        ng = Node(G.left, G.right, _not=not G._not)
    else:
        ng = Variable(G.symbol, _not=not G._not)

    f1 = Node(F, G)
    f2 = Node(ng, nf)

    msg = "T5 for " + str(F) + ", " + str(G)

    return Node(f1, f2, msg=msg)
Ejemplo n.º 14
0
def build_T6(F, G):
    fg = Node(F, G)
    fg.msg = "hypoth t6"

    t5 = build_T5(fg, G)
    T5 = t5[-1]

    ng = notFormula(G)
    ng.msg = "hypoth t6"
    F1 = F
    F1.msg = "hypoth t6"
    # we need (F->G)->G
    F2 = MP(F1, fg)
    ded = build_deduction([F1, ng], fg, G, [F1, F2])
    F3 = ded[-1]

    F4 = MP(F3, T5)

    proof = [F1, ng, F2] + ded + [F4]

    proof = build_deduction([], F, F4, proof)

    return proof
Ejemplo n.º 15
0
    def _create_var(self, quant, name):
        '''Create and return a Var node
        This function won't declare the variable!

        Parameters
        ----------
        quant : Quant
            Quantifier that quantifies this variable.

        Returns
        -------
        Node
            A newly created variable node
        '''
        assert quant != None
        if not self.debug and self.rename:
            name = 'VAR'
        else:
            name = name.split(':')[0]
        node = Node(NodeType.VAR, name)
        node.quant = quant
        quant.vvalue = node
        self.graph.append(node)
        return node
Ejemplo n.º 16
0
def build_T7(F, G):
    # (F->G)->((!F->G)->G)

    nF = notFormula(F)
    nG = notFormula(G)

    F1 = Node(F, G)
    F1.msg = "t7 hypoth"
    F2 = Node(nF, G)
    F2.msg = "t7 hypoth"

    f3 = build_T5(F, G)
    F3 = f3[-1]
    F4 = axiom.A3(F, G)

    f5 = syl_1(F3, F4)
    F5 = f5[-1]

    F6 = MP(F1, F5)

    f7 = build_T4(nG, F)
    F7 = f7[-1]

    # (!F->G)->(!F->!!G)
    F8 = nF
    F9 = Node(nF, G)
    F10 = MP(F8, F9)
    f11 = build_T2(G)
    F11 = f11[-1]

    F12 = MP(F10, F11)

    f13 = build_deduction([F1, F2, F9], F8, F12, [F8, F9, F10] + f11 + [F12])
    F13 = f13[-1]
    f14 = build_deduction([], F9, F13, f13)
    F14 = f14[-1]

    #...
    f15 = syl_1(F14, F7)
    F15 = f15[-1]
    f16 = syl_1(F15, F6)
    F16 = f16[-1]

    proof = [F1, F2] + f14 + [F4] + f5

    f17 = build_deduction([], F1, F16, proof)

    proof = f17

    return proof
Ejemplo n.º 17
0
    def _create_node(self, name):
        '''Create and return a node

        Parameters
        ----------
        name : str
            Name of the node

        Returns
        -------
        Node
            A newly created node
        '''
        nname, nodetype = self._name_type(name)
        node = Node(nodetype, nname)
        self.graph.append(node)
        return node
Ejemplo n.º 18
0
    def _create_const(self, name):
        '''Create and return a Const node

        Parameters
        ----------
        name : str
            Name of the constant.

        Returns
        -------
        Node
            A newly created constant node
        '''
        node = Node(NodeType.CONST, name)
        self.graph.append(node)
        self.scope.declare_const(name, node)
        return node
Ejemplo n.º 19
0
def S1(F1, F2):
    """
        F->G, G->H |- F->H

        F1 = F->G
        F2 = G->H
    """
    try:
        if F1.right == F2.left:

            msg = "S1 for " + str(F1) + ", " + str(F2)

            node = Node(F1.right, F2.left, msg=msg)
            return node
    except:
        pass

    return None
Ejemplo n.º 20
0
def S2(F1, F2):
    """
        F->(G->H), G |- F->H

        F1 = F->(G->H)
        F2 = G
    """

    try:
        msg = "S2 for " + str(F1) + ", " + str(F2)

        if F1.right.left == F2:
            node = Node(F1.left, F1.right.right, msg=msg)

    except:
        pass

    return None
Ejemplo n.º 21
0
    def _create_quant(self, name, free_var=False):
        '''Create and return a Quant node

        Parameters
        ----------
        name : str
            Name of the quantifier.
        free_var : bool
            True if quant is associated with a free variable

        Returns
        -------
        Node
            A newly created quantifier node
        '''
        node = Node(NodeType.QUANT, name)
        self.graph.append(node)
        if not free_var:
            self.scope.declare_var(node)
        return node
Ejemplo n.º 22
0
def build_T4(F, G):
    # (!G->!F)->(F->G)

    nF = notFormula(F)
    nG = notFormula(G)

    F1 = Node(nG, nF)
    F2 = F

    F3 = axiom.A3(F, G)
    F4 = MP(F1, F3)
    F5 = axiom.A1(F, nG)

    f6 = syl_1(F5, F4)

    proof = [F3, F4, F5]
    proof.extend(f6)

    proof = build_deduction([F1, F], F1, f6[-1], proof)

    return proof
Ejemplo n.º 23
0
def A2(F, G, H):
    """
        (F -> (G -> H)) -> ( (F -> G) -> (F -> H) )     axiom (2)
    """
    gh = Node(G, H)
    fgh = Node(F, gh)

    fg = Node(F, G)
    fh = Node(F, H)
    fgfh = Node(fg, fh)

    msg = "A2 for " + str(F) + ", " + str(G) + ", " + str(H)

    res = Node(fgh, fgfh, msg=msg)

    return res
Ejemplo n.º 24
0
def build_T5(F, G):
    """
        (F->G)->(!G->!F)
    """

    nF = notFormula(F)
    nG = notFormula(G)

    nnF = notFormula(nF)
    nnG = notFormula(nG)

    F1 = Node(F, G)

    f2 = build_T2(G)
    F2 = f2[-1]

    F3 = axiom.A3(nG, nF)

    f4 = syl_1(F1, F2)  # f->!!g
    F4 = f4[-1]

    f5 = build_T1(F)
    F5 = f5[-1]

    f6 = syl_1(F5, F4)  # !!f->!!g
    F6 = f6[-1]

    F7 = MP(F6, F3)  # (!!f->!g)->!f

    F8 = axiom.A1(nG, nnF)

    f9 = syl_1(F8, F7)
    F9 = f9[-1]

    proof = f2 + [F3] + f4 + f5 + f6 + [F7, F8] + f9

    proof = build_deduction([F1, nG], F1, F9, proof)

    return proof
Ejemplo n.º 25
0
    return False


def if_Axiom(F):
    """
        Check if F is Axiom
    """

    return if_A1(F) or if_A2(F) or if_A3(F)


if __name__ == '__main__':

    f1 = Variable('F')
    f2 = Node(Variable('F'), Variable('G'))
    print(MP(f1, f2))
    exit()

    f1 = "(A->B)"
    f2 = "(A->!(B->!C))"
    tests = [
        "F->(G->F)", "G->(F->G)", "F->(F->F)", "!F->((A->B)->!F)",
        "(A->(B->C))->((A->B)->(A->C))",
        "({0}->(B->{1}))->(({0}->B)->({0}->{1}))".format(f1, f2),
        "(!G->!F)->((!G->F)->G)", "(!G->!G)->((!G->G)->G)",
        "(!(f1)->!(f2))->((!(f1)->(f2))->(f1))".replace('f1',
                                                        f1).replace('f2', f2)
    ]

    from formula import prepareString, buildFormula, IncorrectInput
Ejemplo n.º 26
0
 def _create_constfunc(self, name):
     node = Node(NodeType.CONSTFUNC, name)
     self.graph.append(node)
     return node
Ejemplo n.º 27
0
            proof.extend(deductC2)
            proof.extend(t7)
            proof.extend([mp1, mp2])

            curLen = len(proof)  #for debug

            vector += 1

        n += 1

    return proof


if __name__ == '__main__':

    f = Variable('F')
    g = Variable('G')

    nf = notFormula(f)
    nnf = notFormula(nf)
    Ad_Theorem(Node(nnf, f))

    t4 = build_T4(f, g)
    T4 = t4[-1]
    t5 = build_T5(f, g)
    t6 = build_T6(f, g)
    t7 = build_T7(f, g)
    T7 = t7[-1]

    print('no exception? it is small victory')
Ejemplo n.º 28
0
def TL(F):

    msg = "L theorem for " + str(F)
    return Node(F, F, msg=msg)
Ejemplo n.º 29
0
def Calmar_Theorem(F, values):
    '''
        Calmar's Theorem implementation

    :param F: Propositional calculus formula: Variable or Node
    :return:
    '''

    if type(F) == Variable:
        v = Variable(F.symbol, _not=True if values[F.symbol] == 1 else 0)

        return [v]

    if F._not:  # F = !G
        G = Node(None, None)
        G.left = F.left  # Copy G, but F = !G
        G.right = F.right

        if F.calculate(values) == 1:
            G.msg = "Calmar's theorem, 1.a) F^(alpha) = G^(alpha) => hypoth |- G^() = F^()"

            return [G]

        else:
            # !f = !!g
            t2 = build_T2(G)
            T2 = t2[-1]

            nng = MP(G, T2)

            res = t2
            res.append(nng)
            return res

    else:  # F = G->H

        res = []

        G = F.left
        H = F.right

        if G.calculate(values) == 0:

            nG = notFormula(G)
            t3 = build_T3(G, H)

            T = t3[-1]
            mp = MP(nG, T)

            res = t3
            res.append(mp)

        elif H.calculate(values) == 1:

            # h->(g->h)
            h = H
            hgh = axiom.A1(H, G)

            gh = MP(h, hgh)

            return [hgh, gh]

        else:
            # F = !(G->H)
            # have G, !H. proof !(G->H)

            nH = notFormula(H)

            t6 = build_T6(G, H)
            T6 = t6[-1]

            f1 = MP(G, T6)
            f2 = MP(nH, f1)

            res = t6
            res.extend([f1, f2])

        return res