Ejemplo n.º 1
0
class mean_std_plot(object):
    def __init__(self,device,scale_size,exp,noise):
        self.device= device
        self.scale = scale_size
        self.prediction = Prediction(self.scale,self.device)
        self.exp = exp
        self.noise = noise
    def compute_mean_std(self,pos,truth,save_dir):
        model = self.prediction.model(self.exp)
        num  = pos.shape[1]
        pos_samples = np.full([num,self.scale*self.scale],0.0)
        permeability_samples = np.full([num,self.scale,self.scale],0.0)
        if self.exp =='inversion_16' or self.exp =='inversion_32' or self.exp =='inversion_64':
            zc = pos 
            for i in range(num):
                pos_samples[i,:] = self.prediction.permeability(self.exp,model,zc[:,i],zf=None).cpu().numpy().reshape(self.scale*self.scale,)
                permeability_samples[i,:,:]=pos_samples[i,:].reshape(self.scale,self.scale)
        if self.exp =='inversion_16_64':
            zc = pos[:16,:]
            zf = pos[16:,:]
            for i in range(num):
                pos_samples[i,:] = self.prediction.permeability(self.exp,model,zc[:,i],zf=zf[:,i]).cpu().numpy().reshape(self.scale*self.scale,)
                permeability_samples[i,:,:]=pos_samples[i,:].reshape(self.scale,self.scale)
        mean = np.mean(permeability_samples,axis = 0)
        std = np.std(permeability_samples,axis = 0)
        sample1 = permeability_samples[0,:,:].reshape(self.scale,self.scale)
        sample2 = permeability_samples[1000,:,:].reshape(self.scale,self.scale)
        sample3 = permeability_samples[1999,:,:].reshape(self.scale,self.scale)
        #np.savetxt(save_dir+f'/pos_samples.dat',pos_samples)
        np.savetxt(save_dir+f'/mean.dat',mean)
        np.savetxt(save_dir+f'/std.dat',std)
        self.plot(truth,mean,std,sample1,sample2,sample3,save_dir)
        return pos_samples

    def plot(self,truth,mean,std,sample1,sample2,sample3,save_dir):
        samples = [np.log(truth),mean,std,sample1,sample2,sample3]
        fig, _ = plt.subplots(2,3, figsize=(9, 6))
        vmin1 = [np.amin(samples[0]), np.amin(samples[0]),np.amin(samples[2]),np.amin(samples[0]),np.amin(samples[0]),np.amin(samples[0])]
        vmax1 = [np.amax(samples[0]), np.amax(samples[0]),np.amax(samples[2]),np.amax(samples[0]),np.amax(samples[0]),np.amax(samples[0])]
        for j, ax in enumerate(fig.axes):
            ax.set_aspect('equal')
            ax.set_axis_off()
            cax = ax.imshow(samples[j],  cmap='jet', origin='upper',vmin=vmin1[j],vmax=vmax1[j])
            cbar = plt.colorbar(cax, ax=ax, fraction=0.046, pad=0.04,
                                format=ticker.ScalarFormatter(useMathText=True))
            if j == 0:
                ax.set_title('Reference',fontsize=12)
            if j == 1:
                ax.set_title('Mean',fontsize=12)
            if j == 2:
                ax.set_title('Standard deviation',fontsize=12)
            if j == 3:
                ax.set_title('Posterior sample 1',fontsize=12)
            if j == 4:
                ax.set_title('Posterior sample 2',fontsize=12)
            if j == 5:
                ax.set_title('Posterior sample 3',fontsize=12)
        plt.savefig(save_dir+f'/gaussian_statistics_{self.exp}.pdf',bbox_inches = 'tight', dpi=1000,pad_inches=0.0)
        plt.close()
Ejemplo n.º 2
0
        plt.savefig(output_dir + filename,
                    bbox_inches='tight',
                    dpi=1000,
                    pad_inches=0.0)
        plt.close()


if __name__ == "__main__":
    torch.random.manual_seed(10)
    device = torch.device("cuda:3" if torch.cuda.is_available() else "cpu")
    latent_c = latent_c(device)
    prediction = Prediction('scale_64', device)
    nz_x, nz_y = 4, 4
    z = torch.randn(4, 1, nz_x, nz_y)
    model = prediction.model('inversion_16')
    gen_imgs = prediction.permeability('inversion_16', model, z)
    samples = np.squeeze(gen_imgs.data.cpu().numpy())
    condition = np.loadtxt(os.getcwd() +
                           f'/Gaussian/MDGM_plot/gaussian_16.dat')
    zc = latent_c.coarse_latent('inversion_16_64', condition).reshape(16, )
    zc = (np.ones([3, 1, 4, 4])) * zc.reshape(4, 4)
    z64 = torch.randn(3, 1, 16, 16)
    model = prediction.model('inversion_16_64')
    gen_imgs1 = prediction.permeability('inversion_16_64', model, zc, zf=z64)
    samples1 = np.squeeze(gen_imgs1.data.cpu().numpy())
    samples2 = [
        samples[0], samples[1], samples[2], samples[3], condition, samples1[0],
        samples1[1], samples1[2]
    ]
    filename = '/gaussian_MDGM_16_64.pdf'
    prediction.plot_ite(samples2, filename)
Ejemplo n.º 3
0
class Plot_convergence(object):
    def __init__(self):
        device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu") # training on GPU or CPU
        self.prediction = Prediction('scale_64',device)
        self.simulation = simulation()
        self.true_permeability = np.loadtxt(os.getcwd()+f'/Gaussian/test_data/true_permeability_0.05.dat').reshape(64,64)
        self.obs = np.loadtxt(os.getcwd()+f'/Gaussian/test_data/obs_0.05.dat')
        self.sigma = np.loadtxt(os.getcwd()+f'/Gaussian/test_data/sigma_0.05.dat')
        self.ref_fx,_,_,_,_,_ = self.simulation.demo64(self.true_permeability)
        self.ref_sswr = np.sum(np.power((self.obs-self.ref_fx)/self.sigma,2.0) )
        self.ref_rss = np.sum(np.power((self.obs-self.ref_fx),2.0) )

    def compute_para_rss(self,z, exp):
        num  = z.shape[1]
        permeability_samples = np.full((num,4096),0.0)
        para_rss = np.full((num,),0.0)
        if exp=='inversion_64':
            model = self.prediction.model(exp)
            for i in range(num):
                permeability_samples[i,:] = self.prediction.permeability(exp,model,z[:,i]).cpu().numpy().reshape(4096,)
                para_rss[i,] = np.sum(np.power((permeability_samples[i,:]-np.log(self.true_permeability.reshape(4096,))),2))
        if exp=='inversion_16_64':
            model = self.prediction.model(exp)
            for i in range(num):
                zc = z[:16,i]
                zf = z[16:,i]
                permeability_samples[i,:] = self.prediction.permeability(exp,model,zc,zf =zf).cpu().numpy().reshape(4096,)
                para_rss[i,] = np.sum(np.power((permeability_samples[i,:]-np.log(self.true_permeability.reshape(4096,))),2))
        return para_rss
    
    def plot_para_rss(self,para_rss_64,para_rss_16_64):

        fig,ax =plt.subplots()
        # ax.set_yscale('log')
        x_axix=np.linspace(0,10000,10000)
        x_axix1=np.linspace(0,5000,5000)
        plt.ylabel('RSS of parameter field')
        plt.xlabel('Iterations')
        plt.plot(x_axix, para_rss_64[0:], color='green', label='reference')
        plt.plot(x_axix1, para_rss_16_64[0:], color='blue', label='16-64')
        plt.legend()
        plt.savefig(os.getcwd()+ f'/Gaussian/convergence/images/gaussian_para_rss_convergence.pdf',bbox_inches = 'tight', dpi=1000,pad_inches=0.0)
        plt.close()

    def para_rss_convergence(self):
        z_64 = np.loadtxt(os.getcwd()+f'/Gaussian/prediction/inversion_64/pCN_step0.08_0.05_10000_8000_all_samples.dat')
        z_16_64 = np.loadtxt(os.getcwd()+f'/Gaussian/prediction/inversion_16_64/pCN_step0.08_0.05_5000_3000_all_samples.dat')
        para_rss_64 = self.compute_para_rss(z_64 , 'inversion_64')
        para_rss_16_64 = self.compute_para_rss(z_16_64, 'inversion_16_64')
        self.plot_para_rss(para_rss_64,para_rss_16_64)


    def Comp_log_likelihood(self,fx):
        e=self.obs-fx
        rss = np.sum(np.power(e,2.0) )
        sswr = np.sum(np.power(e/self.sigma,2.0) )
        nsswr = sswr/self.ref_sswr
        nrss = rss/self.ref_rss
        return  rss,nrss, sswr,nsswr

    def plot_nsswr(self,nsswr64,nsswr16_64):
        fig,ax =plt.subplots()
        ax.set_yscale('log')
        x_axix=np.linspace(0,10000,10000)
        x_axix1=np.linspace(0,5000,5000)
        plt.ylabel('NSSWR')
        plt.xlabel('Iterations')
        plt.plot(x_axix, nsswr64[0:], color='green', label='reference')
        plt.plot(x_axix1, nsswr16_64[0:], color='blue', label='16-64')
        plt.legend()
        plt.savefig(os.getcwd()+ f'/Gaussian/convergence/images/gaussian_nsswr_convergence.pdf',bbox_inches = 'tight', dpi=1000,pad_inches=0.0)
        plt.close()

    
    def plot_obs_rss(self,rss64,rss16_64):
        fig,ax =plt.subplots()
        ax.set_yscale('log')
        x_axix=np.linspace(0,10000,10000)
        x_axix1=np.linspace(0,5000,5000)
        plt.ylabel('RSS of observable pressure values')
        plt.xlabel('Iterations')
        plt.plot(x_axix, rss64[0:], color='green', label='reference')
        plt.plot(x_axix1, rss16_64[0:], color='blue', label='16-64')
        plt.legend()
        plt.savefig(os.getcwd()+ f'/Gaussian/convergence/images/gaussian_obsrss_convergence.pdf',bbox_inches = 'tight', dpi=1000,pad_inches=0.0)
        plt.close()


    def nsswr_convergence(self):
        fx64 = np.loadtxt(os.getcwd()+f'/Gaussian/prediction/inversion_64/pCN_step0.08_0.05_10000_8000_fx_obs.dat')
        fx16_64 = np.loadtxt(os.getcwd()+f'/Gaussian/prediction/inversion_16_64/pCN_step0.08_0.05_5000_3000_fx_obs.dat')
        rss64 = np.full((fx64.shape[1],1),0.0)
        nrss64 = np.full((fx64.shape[1],1),0.0)
        sswr64 = np.full((fx64.shape[1],1),0.0)
        nsswr64 = np.full((fx64.shape[1],1),0.0)
        nrss16_64 = np.full((fx16_64.shape[1],1),0.0)
        rss16_64 = np.full((fx16_64.shape[1],1),0.0)
        sswr16_64 = np.full((fx16_64.shape[1],1),0.0)
        nsswr16_64 = np.full((fx16_64.shape[1],1),0.0)
        for i in range(fx64.shape[1]):
            rss64[i,:],nrss64[i,:], sswr64[i,:],nsswr64[i,:]= self.Comp_log_likelihood(fx64[:,i])
        for i in range(fx16_64.shape[1]):   
            rss16_64[i,:],nrss16_64, sswr16_64[i,:],nsswr16_64[i,:]= self.Comp_log_likelihood(fx16_64[:,i])
        self.plot_nsswr(nsswr64,nsswr16_64)
        self.plot_obs_rss(rss64,rss16_64)

    

    def plot_para_state(self):
        all_samples64 = np.loadtxt(os.getcwd()+f'/Gaussian/prediction/inversion_64/pCN_step0.08_0.05_10000_8000_all_samples.dat')
        all_samples16_64 = np.loadtxt(os.getcwd()+f'/Gaussian/prediction/inversion_16_64/pCN_step0.08_0.05_5000_3000_all_samples.dat')
        truth = np.log(np.loadtxt(os.getcwd()+f'/Gaussian/test_data/true_permeability_0.05.dat'))
        samples = np.full((10,64,64),0.0)
        latent_sample64 = all_samples64[:,[0,999,2999,4999,9999]]
        latent_sample16_64 = all_samples16_64[:,[0,499,999,2999,4999]]

        for i in range(15):
            if i<5:
                exp = 'inversion_64'
                model = self.prediction.model(exp)
                samples[i,:,:] = self.prediction.permeability(exp,model,latent_sample64[:,i]).cpu().numpy().reshape(64,64)
            elif 4<i<10:
                exp = 'inversion_16_64'
                model = self.prediction.model(exp)
                zc = latent_sample16_64[:16,i-5]
                zf = latent_sample16_64[16:,i-5]
                samples[i,:,:] = self.prediction.permeability(exp,model,zc,zf=zf).cpu().numpy().reshape(64,64)
        fig, _ = plt.subplots(2,5, figsize=(15, 6))
        vmin1 = np.amin(truth)
        vmax1 = np.amax(truth)
        for j, ax in enumerate(fig.axes):
            ax.set_aspect('equal')
            ax.set_axis_off()
            cax = ax.imshow(samples[j],  cmap='jet', origin='upper',vmin=vmin1,vmax=vmax1)
            cbar = plt.colorbar(cax, ax=ax, fraction=0.046, pad=0.04,
                                format=ticker.ScalarFormatter(useMathText=True))
            if j == 0:
                ax.set_title('initial state',fontsize=12)
            if j == 1:
                ax.set_title('1000-th state',fontsize=12)
            if j == 2:
                ax.set_title('3000-th state',fontsize=12)
            if j == 3:
                ax.set_title('5000-th state',fontsize=12)
            if j == 4:
                ax.set_title('10000-th state',fontsize=12)
            if j == 5:
                ax.set_title('initial state',fontsize=12)
            if j == 6:
                ax.set_title('499-th state',fontsize=12)
            if j == 7:
                ax.set_title('1000-th state',fontsize=12)
            if j == 8:
                ax.set_title('3000-th state',fontsize=12)
            if j == 9:
                ax.set_title('5000-th state',fontsize=12)
         
        plt.savefig(os.getcwd()+f'/Gaussian/convergence/images/gaussian_para_state.pdf',bbox_inches = 'tight', dpi=1000,pad_inches=0.0)
        plt.close()
Ejemplo n.º 4
0
class inference(object):
    def __init__(self,step,burn_in,dim,obs,sigma,true_permeability,true_pressure,obs_position,scale,device):
        self.dim = dim
        self.burn_in = burn_in
        self.step = step
        self.obs = obs
        self.sigma = sigma
        self.true_permeability = true_permeability
        self.true_pressure = true_pressure
        self.pos = obs_position
        self.plot_interval = 1000
        self.num_obs = 64
        self.prediction = Prediction(scale,device)

    def pCN(self,old_params,beta,dim):
        '''
        Here the prior distribution is standart Normal
        '''
        new_params = np.sqrt(1-beta*beta)*old_params+beta*np.random.randn(dim,)
        return new_params

    def fx(self,model,exp,zc,zf):
        '''
        compute the permeability field X using MDGM, and compute f(X) using forward model
        '''  
        input = self.prediction.permeability(exp,model,zc,zf=zf)
        like , pre = self.prediction.forward(input)
        f_x = np.reshape(like,(1,-1))
        return f_x,input,pre  

    def Comp_log_likelihood(self,obs,sigma,exp,model,zc,zf=None):
        '''
        compute likelihood function for inference
        '''
        f_x,input,pre = self.fx(model,exp,zc,zf)
        e=obs-f_x
        log_likelihood = -0.5 * np.sum( np.power(e/sigma,2.0))
        print('log_like:',log_likelihood)
        return f_x,input,pre, log_likelihood
    
    def pCN_MH(self,init_c,init_state_f,beta,exp,noise,output_dir):
        '''
        MH algorithm with MDGM, two proposal distributions for latent zc and zf respectively,
        where zc can capture global feature, zf is latent variable for parameter local adaption.
        proposal for zc with small step size(0.01)
        proposal for zf with big step size(first 50% state using 0.08, rest with 0.04)
        '''
        coarse_beta = 0.01
        model = self.prediction.model(exp)
        old_params_c = init_c
        dim_c=old_params_c.shape[0]
        accept_num = 0
        dim = dim_c+self.dim
        samples = np.zeros([dim,self.step])
        fx_obs = np.zeros([self.num_obs,self.step])
        log_likelihood = np.zeros([1,self.step])
        old_params_f = init_state_f
        old_fx,old_input,old_pre,old_log_l= self.Comp_log_likelihood(self.obs,self.sigma,exp,model,old_params_c,zf = old_params_f)
        old_params = np.concatenate((old_params_c,old_params_f),axis=0)
        samples[:,0] = old_params.reshape([dim,])
        fx_obs[:,0] = old_fx
        log_likelihood[:,0] = old_log_l
        self.plot_para_field(0,old_input,old_pre,self.true_permeability, self.true_pressure,beta,'pCN',exp,noise,output_dir)
        for i in tqdm(range(1,self.step)):
            if i > 0.5*self.step:
               beta = 0.04
            new_params_c = self.pCN(old_params_c,coarse_beta,dim_c)
            new_params_f = self.pCN(old_params_f,beta,self.dim)
            new_fx,new_input,new_pre,new_log_l= self.Comp_log_likelihood(self.obs,self.sigma,exp,model,new_params_c,zf = new_params_f)            
            new_params = np.concatenate((new_params_c,new_params_f),axis=0)
            ratio = np.exp(new_log_l - old_log_l)
            alpha = min(1,ratio)
            np.random.seed(i)
            z = np.random.rand()
            if z<= alpha:
                print('-----------------------------------------------------------------')
                log_likelihood[:,i] = new_log_l
                fx_obs[:,i] = new_fx
                old_fx= new_fx
                samples[:,i] = new_params
                old_input = new_input
                old_pre = new_pre
                old_params = new_params
                old_params_c = new_params_c 
                old_params_f = new_params_f
                old_log_l = new_log_l
                accept_num = accept_num +1
            elif z>alpha:
                samples[:,i] = old_params
                fx_obs[:,i] = old_fx
                log_likelihood[:,i] = old_log_l
            if  (i+1)%self.plot_interval == 0:
                self.plot_para_field(i,old_input,old_pre,self.true_permeability, self.true_pressure,beta,'pCN',exp,noise,output_dir)

        post_samples = samples[:,self.burn_in:]
        accept_ratio = (accept_num/self.step)
        print('accept_ratio:',accept_ratio)
        accept = [accept_ratio,accept_num]
        return samples, post_samples,fx_obs,accept,log_likelihood
     

    def plot_para_field(self,i,input,pre_pressure, true_permeability, true_pressure,beta,type,exp,noise,output_dir):
        '''
        Plot Markov chain state(log permeability)
        '''
        samples = [np.log(true_permeability),input.data.cpu().numpy(), true_pressure.reshape(64,64),pre_pressure]
        fig, _ = plt.subplots(2,2, figsize=(6,6))
        vmin1 = [np.amin(samples[0]), np.amin(samples[0]),np.amin(samples[2]), np.amin(samples[2])]
        vmax1 = [np.amax(samples[0]), np.amax(samples[0]),np.amax(samples[2]), np.amax(samples[2])]   
        for j, ax in enumerate(fig.axes):
            ax.set_aspect('equal')
            ax.set_axis_off()
            cax = ax.imshow(samples[j],  cmap='jet',vmin=vmin1[j],vmax=vmax1[j])
            cbar = plt.colorbar(cax, ax=ax, fraction=0.046, pad=0.04,
                                format=ticker.ScalarFormatter(useMathText=True))
        plt.savefig(output_dir+f'/{type}_step_size{beta}_state_{i+1}.pdf')
        plt.close()
Ejemplo n.º 5
0
class inference(object):
    def __init__(self,step,burn_in,dim,obs,sigma,true_permeability,true_pressure,obs_position,scale,device):
        self.dim = dim
        self.burn_in = burn_in
        self.step = step
        self.obs = obs
        self.sigma = sigma
        self.true_permeability = true_permeability
        self.true_pressure = true_pressure
        self.pos = obs_position
        self.Prior_type = 'Standard Normal'
        self.plot_interval = 1000
        self.num_obs = 64
        self.prediction = Prediction(scale,device)

    def pCN(self,old_params,beta):
        '''
        Here the prior distribution is standart Normal
        '''
        new_params = np.sqrt(1-beta*beta)*old_params+beta*np.random.randn(self.dim,)
        return new_params

    def fx(self,model,exp,z): 
        '''
        compute the permeability field X using MDGM, and compute f(X) using forward model
        '''  
        input = self.prediction.permeability(exp,model,z)
        like , pre = self.prediction.forward(input)
        fx = np.reshape(like,(1,-1))
        return fx
  
    def Comp_log_likelihood(self,z,obs,sigma,exp,model):
        '''
        compute likelihood function for inference
        '''
        fx = self.fx(model,exp,z)
        e=obs-fx
        log_likelihood = -0.5 * np.sum( np.power(e/sigma,2.0))
        print('log_like:',log_likelihood)
        return fx, log_likelihood
    
    def pCN_MH(self,init_state,beta,exp,noise,output_dir):
        '''
        MH algorithm with DGM on the first scale(the coarsest scale)
        proposal for latent variable z1 with big step size to explore the whole space
        (first 50% state using 0.08, rest with 0.04)
        '''
        model = self.prediction.model(exp)
        accept_num = 0
        old_params = init_state
        samples = np.zeros([self.dim,self.step])
        log_likelihood = np.zeros([1,self.step])
        fx_obs = np.zeros([self.num_obs,self.step])
        old_fx ,old_log_l= self.Comp_log_likelihood(old_params,self.obs,self.sigma,exp,model)
        fx_obs[:,0] = old_fx
        log_likelihood[:,0] = old_log_l
        samples [:,0] = old_params.reshape([self.dim,])
        self.plot_para_field(0,old_params,self.true_permeability, self.true_pressure,beta,'pCN',exp,model,noise,output_dir) 
        for i in tqdm(range(1,self.step)):
            if i > 0.5*self.step:
               beta = 0.04
            new_params = self.pCN(old_params,beta)
            new_fx ,new_log_l = self.Comp_log_likelihood(new_params,self.obs,self.sigma,exp,model)
            ratio = np.exp(new_log_l - old_log_l)
            alpha = min(1,ratio)
            np.random.seed(i)
            z = np.random.rand()
            if z<= alpha:
                print('-----------------------------------------------------------------')
                old_params = new_params.reshape([self.dim,])
                fx_obs[:,i] = new_fx
                log_likelihood[:,i] = new_log_l
                samples[:,i] = new_params.reshape([self.dim,])
                old_log_l = new_log_l
                old_fx = new_fx
                accept_num = accept_num +1
            elif z>alpha:
                old_params = old_params
                samples[:,i] = old_params.reshape([self.dim,])
                fx_obs[:,i] = old_fx
                log_likelihood[:,i] = old_log_l
            if (i+1)%self.plot_interval == 0:
                self.plot_para_field(i,old_params,self.true_permeability, self.true_pressure,beta,'pCN',exp,model,noise,output_dir)
        post_samples = samples[:,self.burn_in:]
        accept_ratio = accept_num/self.step
        print('accept_ratio:',accept_ratio)
        accept = [accept_ratio,accept_num]
        return samples, post_samples,fx_obs,accept,log_likelihood

    def plot_para_field(self,i,params, true_permeability, true_pressure,beta,type,exp,model,noise,output_dir):
        '''
        Plot Markov chain state(log permeability)
        '''
        pre_permeability =  self.prediction.permeability(exp,model,params)
        _, pre_pressure = self.prediction.forward(pre_permeability)
        if exp=='inversion_16':
            pre_permeability = pre_permeability.data.cpu().numpy().reshape(16,16)
        if exp=='inversion_64':
            pre_permeability = pre_permeability.data.cpu().numpy().reshape(64,64)
        samples = [np.log(true_permeability),pre_permeability, true_pressure,pre_pressure]
        fig, _ = plt.subplots(2,2, figsize=(6,6))
        vmin1 = [np.amin(samples[0]), np.amin(samples[0]),np.amin(samples[2]),np.amin(samples[2])]
        vmax1 = [np.amax(samples[0]), np.amax(samples[0]),np.amax(samples[2]),np.amax(samples[2])]
        for j, ax in enumerate(fig.axes):
            ax.set_aspect('equal')
            ax.set_axis_off()
            cax = ax.imshow(samples[j],  cmap='jet',vmin=vmin1[j],vmax=vmax1[j])
            cbar = plt.colorbar(cax, ax=ax, fraction=0.046, pad=0.04,
                                format=ticker.ScalarFormatter(useMathText=True))
        plt.savefig(output_dir+f'/{type}_step_size{beta}_state_{i+1}.pdf')
        plt.close()