def test_diagonal():
    """Test some of the functions in Diagonal."""
    bad_diag = np.zeros((5, 5), dtype=np.complex128)
    with pytest.raises(ValueError):
        diagonal_hamiltonian.Diagonal(bad_diag)
    diag = np.zeros((5, ), dtype=np.complex128)
    test = diagonal_hamiltonian.Diagonal(diag)
    assert test.dim() == 5
    assert test.rank() == 2
Ejemplo n.º 2
0
    def test_apply_diagonal(self):
        wfn = Wavefunction([[2, 0, 2]])
        wfn.set_wfn(strategy='random')

        data = numpy.random.rand(2)
        hamil = diagonal_hamiltonian.Diagonal(data)
        out1 = wfn._apply_diagonal(hamil)

        fac = 0.5
        hamil = diagonal_hamiltonian.Diagonal(data, e_0=fac)
        out2 = wfn._apply_diagonal(hamil)
        out2.ax_plus_y(-fac, wfn)
        self.assertTrue((out1 - out2).norm() < 1.0e-8)
Ejemplo n.º 3
0
def get_diagonal_hamiltonian(hdiag: 'numpy.ndarray', e_0: complex = 0. + 0.j
                            ) -> 'diagonal_hamiltonian.Diagonal':
    """Initialize a diagonal hamiltonian

    Args:
        hdiag (numpy.ndarray) - diagonal elements

        e_0 (complex) - scalar part of the Hamiltonian
    """
    return diagonal_hamiltonian.Diagonal(hdiag, e_0=e_0)
Ejemplo n.º 4
0
    def test_apply_number(self):
        norb = 4
        test = numpy.random.rand(norb, norb)
        diag = numpy.random.rand(norb * 2)
        diag2 = copy.deepcopy(diag)
        e_0 = 0
        for i in range(norb):
            e_0 += diag[i + norb]
            diag2[i + norb] = -diag[i + norb]
        hamil = diagonal_hamiltonian.Diagonal(diag2, e_0=e_0)
        hamil._conserve_number = False
        wfn = Wavefunction([[4, 2, norb]], broken=['number'])
        wfn.set_wfn(strategy='from_data', raw_data={(4, 2): test})
        out1 = wfn.apply(hamil)

        hamil = diagonal_hamiltonian.Diagonal(diag)
        wfn = Wavefunction([[4, 2, norb]])
        wfn.set_wfn(strategy='from_data', raw_data={(4, 2): test})
        out2 = wfn.apply(hamil)

        self.assertTrue(
            numpy.allclose(out1._civec[(4, 2)].coeff,
                           out2._civec[(4, 2)].coeff))
Ejemplo n.º 5
0
def process_rank2_matrix(mat: numpy.ndarray,
                         norb: int,
                         e_0: complex = 0. + 0.j) -> 'hamiltonian.Hamiltonian':
    """Look at the structure of the (1, 0) component of the one body matrix and
    determine the symmetries.

    Args:
        mat (numpy.ndarray) - input matrix to be processed

        norb (int) - the number of orbitals in the system

        e_0 (copmlex) - scalar part of the Hamiltonian

    Returns:
        (Hamiltonian) - resulting Hamiltonian
    """
    if not numpy.allclose(mat, mat.conj().T):
        raise ValueError('Input matrix is not Hermitian')

    diagonal = True

    for i in range(1, max(norb, mat.shape[0])):
        for j in range(0, i):
            if mat[i, j] != 0. + 0.j:
                diagonal = False
                break

    if diagonal:
        return diagonal_hamiltonian.Diagonal(mat.diagonal(), e_0=e_0)

    if mat[norb:2 * norb, :norb].any():
        return gso_hamiltonian.GSOHamiltonian(tuple([mat]), e_0=e_0)

    if numpy.allclose(mat[:norb, :norb], mat[norb:, norb:]):
        return restricted_hamiltonian.RestrictedHamiltonian(tuple([mat]),
                                                            e_0=e_0)

    spin_mat = numpy.zeros((norb, 2 * norb), dtype=mat.dtype)
    spin_mat[:, :norb] = mat[:norb, :norb]
    spin_mat[:, norb:2 * norb] = mat[norb:, norb:]
    return sso_hamiltonian.SSOHamiltonian(tuple([spin_mat]), e_0=e_0)