Ejemplo n.º 1
0
    def keyGeneration(self, digit):
        p = self.primeGeneration(digit)
        q = self.primeGeneration(digit)
        n = p * q
        print("p" + p.__str__())
        print("q" + q.__str__())
        phin = (p - 1) * (q - 1)
        print("phin" + phin.__str__())
        e = phin - 1
        print("breakpoint1")
        for i in range(2, phin - 1):
            print(i)
            if (fractions._gcd(i, phin) == 1):
                e = i
                break
        privateKey = 0
        for i in range(0, phin):
            print(i.__str__() + "/" + phin.__str__())
            if i * e % phin == 1:

                privateKey = i

        file = open('n.txt', 'w')
        file.write(n.__str__())
        file.close()
        file = open('e.txt', 'w')
        file.write(e.__str__())
        file.close()
        file = open('d.txt', 'w')
        file.write(privateKey.__str__())
        file.close()
Ejemplo n.º 2
0
 def cleverWay():
     ct = time.time()
     for m in get_divisors(pifSum/2):
         for k in get_divisors(pifSum/(2*m)):
             if k - m < m and k - m > 0 and fractions._gcd(m,k - m) == 1:
                 n = k - m
                 d = pifSum/(2*m*k)
                 print('cleverWay', (m**2+n**2)*d, 2*m*n*d, (m**2-n**2)*d, time.time() - ct)
Ejemplo n.º 3
0
    def set_params(self, xc, yc, turtle_color, R, r, l):
        self.xc = xc
        self.yc = yc  # współrzędne początkowe rysika
        self.turtle_color = turtle_color
        self.R = int(R)  # promień większego okręgu
        self.r = int(r)  # promień mniejszego
        self.l = l  # stosunek odcinka rysik-centrum mniejszego do r

        # największy wspólny dzielnik promieni
        nwd_promienia = fractions._gcd(self.r, self.R)
        self.n_rot = self.r // nwd_promienia

        # stosunek promieni
        self.k = r / float(R)

        self.turtle.color(*turtle_color)
        self.alpha = 0
Ejemplo n.º 4
0
 def maxPoints(self, A, B):
     hash_map = {}
     n = len(A)
     maxlen = 0
     if n == 1:
         return 1
     for i in range(n):
         for j in range(i + 1, n):
             p1 = (A[i], B[i])
             p2 = (A[j], B[j])
             if A[j] != A[i]:
                 yslope = p2[1] - p1[1]
                 xslope = p2[0] - p1[0]
                 slope = fractions._gcd(yslope, xslope)
                 yslope /= slope * 1.0
                 xslope /= slope * 1.0
             else:
                 xslope = "inf"
                 yslope = "inf"
             print(xslope, yslope)
             print(maxlen)
             # print (hash_map)
             if (xslope, yslope) in hash_map:
                 if i not in hash_map[(xslope, yslope)]:
                     hash_map[(xslope, yslope)].append(i)
                 if j not in hash_map[(xslope, yslope)]:
                     hash_map[(xslope, yslope)].append(j)
                 if len(hash_map[(xslope, yslope)]) > maxlen:
                     maxlen = len(hash_map[(xslope, yslope)])
             else:
                 hash_map[(xslope, yslope)] = []
                 hash_map[(xslope, yslope)].append(i)
                 hash_map[(xslope, yslope)].append(j)
                 if len(hash_map[(xslope, yslope)]) > maxlen:
                     maxlen = len(hash_map[(xslope, yslope)])
     print(hash_map)
     return maxlen
Ejemplo n.º 5
0
 def __init__(self, n1, n2):
     self.n1 = n1
     self.n2 = n2
     self.d = _gcd(self.n1, self.n2)
     self.dn1 = self.n1 // self.d
     self.dn2 = self.n2 // self.d
Ejemplo n.º 6
0
    num of circles of "01" of len (m*n+L) with n 1's:
        sum (NT ((m*n+L)/d) (n/d))/((m*n+L)/d) * L/d {d\gcd(m*n+L,n)} =?= C(m*n+L, n)*L/(m*n+L)
        left = L/(m*n+L) sum (NT ((m*n+L)/d) (n/d)) {d\gcd(L,n)} = right




'''

from Mobius import iter_Mu, iter_divisor
from fractions import gcd as _gcd
from sympy import binomial as C, gcd as gcds
from nn_ns.math_nn import primes
from sympy.abc import n

gcd = lambda x, y: abs(_gcd(x, y))


def choose_without_period(n, k):
    r'''NT n k = sum Mu d * C(n/d, k/d) {d\gcd(n,k)}    for [(n,k)!=(0,0)]
NT 0 0 = 1
'''
    if (n, k) == (0, 0):
        return 1

    return sum(Mu_d * C(n // d, k // d) for Mu_d, d in iter_Mu(gcd(n, k)))


NT = choose_without_period

assert NT(6, 2) == 12
Ejemplo n.º 7
0
# 정확한 부동소수점수 계산 : decimal

from decimal import Decimal
price = Decimal('19.99')
tax = Decimal('0.06')
total = price + (price * tax)
print(total)  # 21.1894

penny = Decimal('0.01')
print(total.quantize(penny))  # 21.19

# 유리수 계산 : fractions
# 분자를 분모로 나눈 분수를 나타낼 수 있다.
from fractions import Fraction
print(Fraction(1, 3) * Fraction(2, 3))  # 2/9

print(Fraction(1.0 / 3.0))  # 6004799503160661/18014398509481984
print(Fraction(Decimal('1.0') / Decimal('3.0'))
      )  # 3333333333333333333333333333/10000000000000000000000000000

import fractions
print(fractions._gcd(24, 16))  # 8
# gcd : 최소공약수
Ejemplo n.º 8
0
def find_smallest_multiple(n):
    result = 1
    for i in range(1, n + 1):
        result = (result * i) / fractions._gcd(result, i)
    return result
Ejemplo n.º 9
0
def gcd(a, b):
    return _gcd(int(a), int(b))
Ejemplo n.º 10
0
def lcm(x, y):
    return (x * y) // fractions._gcd(x, y)
def phi_euler(n):
    amount = 0
    for k in range(1, n + 1):
        if fractions._gcd(n, k) == 1:
            amount += 1
    return amount
Ejemplo n.º 12
0
 def gcd(a, b):
     return abs(_gcd(a, b))
Ejemplo n.º 13
0
import fractions

print(fractions._gcd(3, 4))
Ejemplo n.º 14
0
def lcm(n, m):
    """Calculates the lowest common multiple of two numbers."""
    return n * m // _gcd(n, m)
Ejemplo n.º 15
0
#!/usr/bin/python
import numpy as np
import DataPreper as dp
import tensorflow as tf
from fractions import _gcd
from tensorflow.contrib import rnn
from tensorflow.python.ops import rnn, rnn_cell


train_x,train_y,test_x,test_y = dp.TrainAndTestRNN()
# number of features
n_featurs = train_x[0].size
# data size
total_size = train_y.size

batch_size = _gcd(train_y.size,test_y.size)



    # gets the data after the split
    # the X data contains stock prices of 19 consecutive days
    # the y data is the stock price of the 20th day
    # reshape to a 3-dimensional tensor

#train_x = train_x.reshape(train_x.shape + tuple([1]))
#test_x = test_x.reshape(test_x.shape + tuple([1]))
#train_y = train_y.reshape(train_y.shape + tuple([1]))
#test_y = test_y.reshape(test_y.shape + tuple([1]))


# rnn configuration
Ejemplo n.º 16
0
def main():
    mult = 1
    for i in range(1, 21):
        mult *= i // fractions._gcd(i, mult)
    return mult