Ejemplo n.º 1
0
## Relabel Plays Columns for Readability
plays.columns = [
    'type', 'inning', 'team', 'player', 'count', 'pitches', 'event', 'game_id',
    'year'
]

## Shift DataFrame to remove the same at bat
pa = plays.loc[plays['player'].shift() != plays['player'],
               ['year', 'game_id', 'inning', 'team', 'player']]

## Group Plate Appearances
pa = pa.groupby(['year', 'game_id', 'team']).size().reset_index(name='PA')

## Reshape Data by Event Type Per Plate Appearance by Setting Event Index and Unstacking the Resulting Frame
events = events.set_index(['year', 'game_id', 'team', 'event_type'])
events = events.unstack().fillna(0).reset_index()

## Clean Events Columns Labels
events.columns = events.columns.droplevel()
events.columns = [
    'year', 'game_id', 'team', 'BB', 'E', 'H', 'HBP', 'HR', 'ROE', 'SO'
]
events = events.rename_axis(None, axis='columns')

## Merge Plate Appearances
events_plus_pa = pd.merge(events,
                          pa,
                          how='outer',
                          left_on=['year', 'game_id', 'team'],
                          right_on=['year', 'game_id', 'team'])
Ejemplo n.º 2
0
import pandas as pd
import matplotlib.pyplot as plt
from frames import games, info, events

plays = games.query("type == 'play' & event != 'NP'")
plays.columns = ["type", "inning", "team", "player", "count", "pitches", "event", "game_id", "year"]

pa = plays.loc[plays["player"].shift() != plays["player"], ["year", "game_id", "inning", "team", "player"]]
pa = pa.groupby(["year", "game_id", "team"]).size().reset_index(name="PA")

events = events.set_index(["year", "game_id", "team", "event_type"])
events = events.unstack().fillna(0).reset_index()
events.columns = events.columns.droplevel()
events.columns = ["year", "game_id", "team", "BB", "E", "H", "HBP", "HR", "ROE","SO"]
events = events.rename_axis("None", axis="columns")

events_plus_pa = pd.merge(events, pa, how="outer", left_on=["year", "game_id", "team"], right_on=["year", "game_id", "team"])
defense = pd.merge(events_plus_pa, info)

defense.loc[:, "DER"] = 1 - ((defense["H"] + defense["ROE"]) / (defense["PA"] - defense["BB"] - defense["SO"] - defense["HBP"] - defense["HR"]))
defense.loc[:, "year"] = pd.to_numeric(defense["year"])

der = defense.loc[defense["year"] >= 1978, ["year", "defense", "DER"]]
der = der.pivot(index="year", columns="defense", values="DER")

der.plot(x_compat=True, xticks=range(1978, 2018, 4), rot=45)

plt.savefig("defense.png")

plt.show()