def __init__(self, game, nnet, args): self.game = game self.nnet = nnet self.pnet = self.nnet.__class__(self.game) # the competitor network self.args = args self.mcts = MCTS(self.game, self.nnet, self.args) self.trainExamplesHistory = [] # history of examples from args.numItersForTrainExamplesHistory latest iterations self.skipFirstSelfPlay = False # can be overriden in loadTrainExamples()
def learn(self): """ Выполняет количество итераций, равное numIters с числом эпизодов, равным numEps, игр нейронной сети с самой собой. После каждой итерации, происходит перетренировка нейронной сети на примерах из trainExamples. Далее новая нейронная сеть соревнуется со старой. Новая нейронная сеть принимается как "хорошая", если нормализованное количество ее побед >= updateThreshold. """ trainExamples = deque([], maxlen=self.args.maxlenOfQueue) for i in range(self.args.numIters): # bookkeeping print('------ITER ' + str(i + 1) + '------') eps_time = ut.AverageMeter() bar = ut.Bar('Self Play', max=self.args.numEps) end = time.time() for eps in range(self.args.numEps): self.mcts = MCTS(self.game, self.nnet, self.args) # reset search tree trainExamples += self.executeEpisode() # bookkeeping + plot progress eps_time.update(time.time() - end) end = time.time() bar.suffix = '({eps}/{maxeps}) Eps Time: {et:.3f}s | Total: {total:} | ETA: {eta:}'.\ format(eps=eps+1, maxeps=self.args.numEps, et=eps_time.avg, total=bar.elapsed_td, eta=bar.eta_td) bar.next() bar.finish() # training new network, keeping a copy of the old one self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') pnet = self.nnet.__class__(self.game) pnet.load_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') pmcts = MCTS(self.game, pnet, self.args) self.nnet.train(trainExamples) nmcts = MCTS(self.game, self.nnet, self.args) # print("Loss_pi:{lp}, Loss_v:{lv}".format(lp=self.nnet.loss_pi, lv=self.nnet.loss_v)) print('PITTING AGAINST PREVIOUS VERSION') arena = Arena(lambda x: np.argmax(pmcts.getActionProb(x, temp=0)), lambda x: np.argmax(nmcts.getActionProb(x, temp=0)), self.game) pwins, nwins = arena.playGames(self.args.arenaCompare) print('NEW/PREV WINS : ' + str(nwins) + '/' + str(pwins)) if pwins + nwins > 0 and float(nwins) / ( pwins + nwins) < self.args.updateThreshold: print('REJECTING NEW MODEL') self.nnet = pnet else: print('ACCEPTING NEW MODEL') self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='checkpoint_' + str(i) + '.pth.tar') self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='best.pth.tar')
BLOCK_SIZE = 20 TILESIZE = 630 / size ui = dict({ 'width': round(size * TILESIZE + 300), 'height': round(size * TILESIZE) }) g = OthelloGame(6, ui=ui) # all players rp = RandomPlayer(g).play gp = GreedyOthelloPlayer(g).play hp = HumanOthelloPlayer(g).play hp1 = HumanPlayerUserInterface(g).play # nnet players n1 = nNNet(g) n1.load_checkpoint('./pretrained_models/othello/', 'best.pth.tar') args1 = dotdict({'numMCTSSims': 6, 'cpuct': 1.0}) mcts1 = MCTS(g, n1, args1) n1p = lambda x: np.argmax(mcts1.getActionProb(x, temp=0)) # m1 = nNNet(g) # m1.load_checkpoint('./pretrained_models/tensorflow/', 'best.pth.tar') # args2 = dotdict({'numMCTSSims': 6, 'cpuct': 1.0}) # mcts2 = MCTS(g, m1, args2) # n2p = lambda x: np.argmax(mcts2.getActionProb(x, temp=0)) arena = oa.OthelloArena(n1p, hp1, g, display=g.displays) print(arena.playGames(2, verbose=True))
class Coach: """ Данный класс описывает процесс игры нейронной сети с самой собой и ее обучение. Он использует функции, определенные в классах Game и NeuralNet. Параметр args уточняется в main.py """ def __init__(self, game, nnet, args): self.game = game self.board = game.getInitBoard() self.nnet = nnet self.args = args self.mcts = MCTS(self.game, self.nnet, self.args) def executeEpisode(self): """ Данный метод выполняет один эпизод игры нейронной сети с самой собой от лица первого игрока. Всякая сыгранная игра добавляется в тренировочный дата - сет trainExamples. Игра играется до тех пор, пока не закончится. После окончания игры, ее исход используется для присваивания значений каждому примеру в trainExamples. Используется temp = 1, если episodeStep < tempThreshold, а затем temp = 0. Returns: trainExamples: Список примеров, каждый из которых представляется в виде (canonicalBoard, pi, v), где pi - вектор вероятностей (полтики) для метода Монте - Карло. v = 1, если игрок выиграл, а иначе v = -1. """ trainExamples = [] self.board = self.game.getInitBoard() self.curPlayer = 1 episodeStep = 0 while True: episodeStep += 1 canonicalBoard = self.game.getCanonicalForm( self.board, self.curPlayer) temp = int(episodeStep < self.args.tempThreshold) pi = self.mcts.getActionProb(canonicalBoard, temp=temp) sym = self.game.getSymmetries(canonicalBoard, pi) for b, p in sym: trainExamples.append([b, self.curPlayer, p, None]) action = np.random.choice(len(pi), p=pi) self.board, self.curPlayer = self.game.getNextState( self.board, self.curPlayer, action) r = self.game.getGameEnded(self.board, self.curPlayer) if r != 0: return [(x[0], x[2], r * ((-1)**(x[1] != self.curPlayer))) for x in trainExamples] def learn(self): """ Выполняет количество итераций, равное numIters с числом эпизодов, равным numEps, игр нейронной сети с самой собой. После каждой итерации, происходит перетренировка нейронной сети на примерах из trainExamples. Далее новая нейронная сеть соревнуется со старой. Новая нейронная сеть принимается как "хорошая", если нормализованное количество ее побед >= updateThreshold. """ trainExamples = deque([], maxlen=self.args.maxlenOfQueue) for i in range(self.args.numIters): # bookkeeping print('------ITER ' + str(i + 1) + '------') eps_time = ut.AverageMeter() bar = ut.Bar('Self Play', max=self.args.numEps) end = time.time() for eps in range(self.args.numEps): self.mcts = MCTS(self.game, self.nnet, self.args) # reset search tree trainExamples += self.executeEpisode() # bookkeeping + plot progress eps_time.update(time.time() - end) end = time.time() bar.suffix = '({eps}/{maxeps}) Eps Time: {et:.3f}s | Total: {total:} | ETA: {eta:}'.\ format(eps=eps+1, maxeps=self.args.numEps, et=eps_time.avg, total=bar.elapsed_td, eta=bar.eta_td) bar.next() bar.finish() # training new network, keeping a copy of the old one self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') pnet = self.nnet.__class__(self.game) pnet.load_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') pmcts = MCTS(self.game, pnet, self.args) self.nnet.train(trainExamples) nmcts = MCTS(self.game, self.nnet, self.args) # print("Loss_pi:{lp}, Loss_v:{lv}".format(lp=self.nnet.loss_pi, lv=self.nnet.loss_v)) print('PITTING AGAINST PREVIOUS VERSION') arena = Arena(lambda x: np.argmax(pmcts.getActionProb(x, temp=0)), lambda x: np.argmax(nmcts.getActionProb(x, temp=0)), self.game) pwins, nwins = arena.playGames(self.args.arenaCompare) print('NEW/PREV WINS : ' + str(nwins) + '/' + str(pwins)) if pwins + nwins > 0 and float(nwins) / ( pwins + nwins) < self.args.updateThreshold: print('REJECTING NEW MODEL') self.nnet = pnet else: print('ACCEPTING NEW MODEL') self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='checkpoint_' + str(i) + '.pth.tar') self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='best.pth.tar')
def __init__(self, game, nnet, args): self.game = game self.board = game.getInitBoard() self.nnet = nnet self.args = args self.mcts = MCTS(self.game, self.nnet, self.args)
def learn(self): """ Performs numIters iterations with numEps episodes of self-play in each iteration. After every iteration, it retrains neural network with examples in trainExamples (which has a maximium length of maxlenofQueue). It then pits the new neural network against the old one and accepts it only if it wins >= updateThreshold fraction of games. """ for i in range(1, self.args.numIters+1): # bookkeeping print('------ITER ' + str(i) + '------') # examples of the iteration if not self.skipFirstSelfPlay or i>1: iterationTrainExamples = deque([], maxlen=self.args.maxlenOfQueue) eps_time = AverageMeter() bar = Bar('Self Play', max=self.args.numEps) end = time.time() for eps in range(self.args.numEps): self.mcts = MCTS(self.game, self.nnet, self.args) # reset search tree iterationTrainExamples += self.executeEpisode() # bookkeeping + plot progress eps_time.update(time.time() - end) end = time.time() bar.suffix = '({eps}/{maxeps}) Eps Time: {et:.3f}s | Total: {total:} | ETA: {eta:}'.format(eps=eps+1, maxeps=self.args.numEps, et=eps_time.avg, total=bar.elapsed_td, eta=bar.eta_td) bar.next() bar.finish() # save the iteration examples to the history self.trainExamplesHistory.append(iterationTrainExamples) if len(self.trainExamplesHistory) > self.args.numItersForTrainExamplesHistory: print("len(trainExamplesHistory) =", len(self.trainExamplesHistory), " => remove the oldest trainExamples") self.trainExamplesHistory.pop(0) # backup history to a file # NB! the examples were collected using the model from the previous iteration, so (i-1) self.saveTrainExamples(i-1) # shuffle examples before training trainExamples = [] for e in self.trainExamplesHistory: trainExamples.extend(e) shuffle(trainExamples) # training new network, keeping a copy of the old one self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') self.pnet.load_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') pmcts = MCTS(self.game, self.pnet, self.args) self.nnet.train(trainExamples) nmcts = MCTS(self.game, self.nnet, self.args) print('PITTING AGAINST PREVIOUS VERSION') arena = Arena(lambda x: np.argmax(pmcts.getActionProb(x, temp=0)), lambda x: np.argmax(nmcts.getActionProb(x, temp=0)), self.game) pwins, nwins, draws = arena.playGames(self.args.arenaCompare) print('NEW/PREV WINS : %d / %d ; DRAWS : %d' % (nwins, pwins, draws)) if pwins+nwins == 0 or float(nwins)/(pwins+nwins) < self.args.updateThreshold: print('REJECTING NEW MODEL') self.nnet.load_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') else: print('ACCEPTING NEW MODEL') self.nnet.save_checkpoint(folder=self.args.checkpoint, filename=self.getCheckpointFile(i)) self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='best.pth.tar')
class Coach(): """ This class executes the self-play + learning. It uses the functions defined in Game and NeuralNet. args are specified in main.py. """ def __init__(self, game, nnet, args): self.game = game self.nnet = nnet self.pnet = self.nnet.__class__(self.game) # the competitor network self.args = args self.mcts = MCTS(self.game, self.nnet, self.args) self.trainExamplesHistory = [] # history of examples from args.numItersForTrainExamplesHistory latest iterations self.skipFirstSelfPlay = False # can be overriden in loadTrainExamples() def executeEpisode(self): """ This function executes one episode of self-play, starting with player 1. As the game is played, each turn is added as a training example to trainExamples. The game is played till the game ends. After the game ends, the outcome of the game is used to assign values to each example in trainExamples. It uses a temp=1 if episodeStep < tempThreshold, and thereafter uses temp=0. Returns: trainExamples: a list of examples of the form (canonicalBoard,pi,v) pi is the MCTS informed policy vector, v is +1 if the player eventually won the game, else -1. """ trainExamples = [] board = self.game.getInitBoard() self.curPlayer = 1 episodeStep = 0 while True: episodeStep += 1 canonicalBoard = self.game.getCanonicalForm(board,self.curPlayer) temp = int(episodeStep < self.args.tempThreshold) pi = self.mcts.getActionProb(canonicalBoard, temp=temp) #print(canonicalBoard) sym = self.game.getSymmetries(canonicalBoard, pi) for b,p in sym: trainExamples.append([b, self.curPlayer, p, None]) action = np.random.choice(len(pi), p=pi) board, self.curPlayer = self.game.getNextState(board, self.curPlayer, action) r = self.game.getGameEnded(board, self.curPlayer) if r!=0: return [(x[0],x[2],r*((-1)**(x[1]!=self.curPlayer))) for x in trainExamples] def learn(self): """ Performs numIters iterations with numEps episodes of self-play in each iteration. After every iteration, it retrains neural network with examples in trainExamples (which has a maximium length of maxlenofQueue). It then pits the new neural network against the old one and accepts it only if it wins >= updateThreshold fraction of games. """ for i in range(1, self.args.numIters+1): # bookkeeping print('------ITER ' + str(i) + '------') # examples of the iteration if not self.skipFirstSelfPlay or i>1: iterationTrainExamples = deque([], maxlen=self.args.maxlenOfQueue) eps_time = AverageMeter() bar = Bar('Self Play', max=self.args.numEps) end = time.time() for eps in range(self.args.numEps): self.mcts = MCTS(self.game, self.nnet, self.args) # reset search tree iterationTrainExamples += self.executeEpisode() # bookkeeping + plot progress eps_time.update(time.time() - end) end = time.time() bar.suffix = '({eps}/{maxeps}) Eps Time: {et:.3f}s | Total: {total:} | ETA: {eta:}'.format(eps=eps+1, maxeps=self.args.numEps, et=eps_time.avg, total=bar.elapsed_td, eta=bar.eta_td) bar.next() bar.finish() # save the iteration examples to the history self.trainExamplesHistory.append(iterationTrainExamples) if len(self.trainExamplesHistory) > self.args.numItersForTrainExamplesHistory: print("len(trainExamplesHistory) =", len(self.trainExamplesHistory), " => remove the oldest trainExamples") self.trainExamplesHistory.pop(0) # backup history to a file # NB! the examples were collected using the model from the previous iteration, so (i-1) self.saveTrainExamples(i-1) # shuffle examples before training trainExamples = [] for e in self.trainExamplesHistory: trainExamples.extend(e) shuffle(trainExamples) # training new network, keeping a copy of the old one self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') self.pnet.load_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') pmcts = MCTS(self.game, self.pnet, self.args) self.nnet.train(trainExamples) nmcts = MCTS(self.game, self.nnet, self.args) print('PITTING AGAINST PREVIOUS VERSION') arena = Arena(lambda x: np.argmax(pmcts.getActionProb(x, temp=0)), lambda x: np.argmax(nmcts.getActionProb(x, temp=0)), self.game) pwins, nwins, draws = arena.playGames(self.args.arenaCompare) print('NEW/PREV WINS : %d / %d ; DRAWS : %d' % (nwins, pwins, draws)) if pwins+nwins == 0 or float(nwins)/(pwins+nwins) < self.args.updateThreshold: print('REJECTING NEW MODEL') self.nnet.load_checkpoint(folder=self.args.checkpoint, filename='temp.pth.tar') else: print('ACCEPTING NEW MODEL') self.nnet.save_checkpoint(folder=self.args.checkpoint, filename=self.getCheckpointFile(i)) self.nnet.save_checkpoint(folder=self.args.checkpoint, filename='best.pth.tar') def getCheckpointFile(self, iteration): return 'checkpoint_' + str(iteration) + '.pth.tar' def saveTrainExamples(self, iteration): folder = self.args.checkpoint if not os.path.exists(folder): os.makedirs(folder) filename = os.path.join(folder, self.getCheckpointFile(iteration)+".examples") with open(filename, "wb+") as f: Pickler(f).dump(self.trainExamplesHistory) f.closed def loadTrainExamples(self): modelFile = os.path.join(self.args.load_folder_file[0], self.args.load_folder_file[1]) examplesFile = modelFile+".examples" if not os.path.isfile(examplesFile): print(examplesFile) r = input("File with trainExamples not found. Continue? [y|n]") if r != "y": sys.exit() else: print("File with trainExamples found. Read it.") with open(examplesFile, "rb") as f: self.trainExamplesHistory = Unpickler(f).load() f.closed # examples based on the model were already collected (loaded) self.skipFirstSelfPlay = True