Ejemplo n.º 1
0
def inference(params):
	embedding_size = params['embedding_size']
	vocab_size = params['vocab_size']
	sentence_len = params['num_words_before'] + params['num_words_after']
	embedding_wd = utils.get_dict_value(params, 'embedding_wd')
	embedding_device = utils.get_dict_value(params, 'embedding_device')
	embedding_initializer = utils.get_dict_value(params, 'embedding_initializer')
	embedding_keep_prob = utils.get_dict_value(params, 'embedding_keep_prob')
	word_embedding_size = utils.get_dict_value(params, 'word_embedding_size', embedding_size)
	word_len = params['word_len']

	print("USING EMBEDDING DEVICE %s" %embedding_device)
	if embedding_device is not None:
		with tf.device(embedding_device):
			embedding_matrix = nlp.variable_with_weight_decay('embedding_matrix',
																												[vocab_size, embedding_size],
																												initializer=embedding_initializer, wd=embedding_wd)
			word_embedding_matrix = nlp.variable_with_weight_decay('word_embedding_matrix', [128, word_embedding_size],
																														 initializer=embedding_initializer, wd=embedding_wd)
	else:
		embedding_matrix = nlp.variable_with_weight_decay('embedding_matrix', [vocab_size, embedding_size],
																											initializer=embedding_initializer, wd=embedding_wd)
		word_embedding_matrix = nlp.variable_with_weight_decay('word_embedding_matrix', [128, word_embedding_size],
																											initializer=embedding_initializer, wd=embedding_wd)

	input_sentence = tf.placeholder(tf.int32, [None, sentence_len], 'sentence')
	input_word = tf.placeholder(tf.int32, [None, word_len], 'word')
	emb_sentence = tf.nn.embedding_lookup(embedding_matrix, input_sentence, 'emb_sentence')
	emb_word = tf.nn.embedding_lookup(word_embedding_matrix, input_word, 'emb_word')
	if embedding_keep_prob is not None and embedding_keep_prob < 1.0:
		[emb_sentence],_ = core.dropout([emb_sentence], [embedding_keep_prob])
		[emb_word], _ = core.dropout([emb_word], [embedding_keep_prob])
	enc_sentence, _ = sentence_encoder(emb_sentence, emb_word, params)

	return enc_sentence, None
Ejemplo n.º 2
0
def conv2d_array(input,
                 sizes,
                 widths,
                 heights,
                 keep_probs=None,
                 w_wds=0.005,
                 b_wds=0.000,
                 w_initializers=tf.truncated_normal_initializer(stddev=0.05),
                 b_initializers=tf.truncated_normal_initializer(stddev=0.05),
                 name="conv2d_array",
                 vlistin=None,
                 vlistout=None):
    w_wd_list = expand_list(w_wds, sizes)
    b_wd_list = expand_list(b_wds, sizes)
    keep_prob_list = expand_list(keep_probs, sizes)
    w_initializer_list = expand_list(w_initializers, sizes)
    b_initializer_list = expand_list(b_initializers, sizes)
    input_size = input.get_shape().as_list()[-1]
    print('embedding_dimension = ' + str(input_size))
    with tf.variable_scope(name):
        for i, (width, height, size, w_wd, b_wd, keep_prob, w_initializer,
                b_initializer) in enumerate(
                    zip(widths, heights, sizes, w_wd_list, b_wd_list,
                        keep_prob_list, w_initializer_list,
                        b_initializer_list)):
            with tf.variable_scope('conv%s' % str(i)) as scope:
                w = variable_with_weight_decay(
                    'w', [width, height, input_size, size],
                    initializer=w_initializer,
                    wd=w_wd,
                    vlist=vlistin)
                if vlistout is not None:
                    vlistout.append(w)
                b = variable_with_weight_decay('b', [size],
                                               initializer=b_initializer,
                                               wd=b_wd,
                                               vlist=vlistin)
                if vlistout is not None:
                    vlistout.append(b)
                w_out = tf.nn.conv2d(input,
                                     filter=w,
                                     strides=[1, 1, 1, 1],
                                     padding='SAME')
                b_out = tf.nn.bias_add(w_out, b)
                out = tf.nn.relu(b_out)
                if keep_prob is not None and keep_prob < 1.0:
                    [out], _ = core.dropout([out], keep_prob)
                input_size = size
                input = out
    return out
Ejemplo n.º 3
0
def inference(params):
    embedding_size = params['embedding_size']
    vocab_size = params['vocab_size']
    sentence_len = params['num_words_before'] + params['num_words_after']
    embedding_wd = utils.get_dict_value(params, 'embedding_wd', 0.0)
    embedding_device = utils.get_dict_value(params, 'embedding_device', None)
    embedding_initializer = utils.get_dict_value(params,
                                                 'embedding_initializer', None)
    embedding_keep_prob = utils.get_dict_value(params, 'embedding_keep_prob',
                                               1.0)
    print("USING EMBEDDING DEVICE %s" % embedding_device)
    if embedding_device is not None:
        with tf.device(embedding_device):
            embedding_matrix = nlp.variable_with_weight_decay(
                'embedding_matrix', [vocab_size, embedding_size],
                initializer=embedding_initializer,
                wd=embedding_wd)
    else:
        embedding_matrix = nlp.variable_with_weight_decay(
            'embedding_matrix', [vocab_size, embedding_size],
            initializer=embedding_initializer,
            wd=embedding_wd)

    timing_info = tf.placeholder(tf.float32, [None, sentence_len],
                                 'timing_info')
    input_sentence = tf.placeholder(tf.int32, [None, sentence_len],
                                    'tcids_before')
    emb_sentence = tf.nn.embedding_lookup(embedding_matrix, input_sentence,
                                          'emb_sentence')
    if embedding_keep_prob is not None and embedding_keep_prob < 1.0:
        [emb_sentence], _ = core.dropout([emb_sentence], [embedding_keep_prob])
    timing = tf.reshape(timing_info, np.asarray([-1, sentence_len, 1]))
    emb_sentence = tf.concat([emb_sentence, timing], axis=2)
    enc_sentence, _ = sentence_encoder(emb_sentence, params)

    return enc_sentence, None
Ejemplo n.º 4
0
def inference(params):
    #	batch_size = params['batch_size']
    num_steps = params['num_steps']
    cell_size = params['cell_size']
    vocab_size = params['vocab_size']
    num_layers = params['num_layers']
    cell_type = params['cell_type']
    is_training = tf.get_default_graph().get_tensor_by_name('is_training:0')
    embedding_wd = utils.get_dict_value(params, 'embedding_wd')
    #	embedding_device = utils.get_dict_value(params, 'embedding_device')
    embedding_initializer = utils.get_dict_value(params,
                                                 'embedding_initializer')
    embedding_keep_prob = utils.get_dict_value(params, 'embedding_keep_prob')
    rnn_dropout_keep_prob = utils.get_dict_value(params,
                                                 'rnn_dropout_keep_prob', 1.0)
    cell_activation = utils.get_dict_value(params, 'cell_activation', None)

    embedding_matrix = nlp.variable_with_weight_decay(
        'embedding_matrix', [vocab_size, cell_size],
        initializer=embedding_initializer,
        wd=embedding_wd)

    words = tf.placeholder(tf.int32, [None, None], name='x')
    emb_words = tf.nn.embedding_lookup(embedding_matrix, words, 'emb_words')

    # add dropout if needed
    if embedding_keep_prob is not None and embedding_keep_prob < 1.0:
        [emb_words], _ = core.dropout([emb_words], [embedding_keep_prob])

    if num_layers > 1:
        cell_list = []
        for _ in range(num_layers):
            if cell_type == 'GRU':
                cell = tf.contrib.rnn.GRUCell(cell_size)
            elif cell_type == 'BlockLSTM':
                cell = tf.contrib.rnn.LSTMBlockCell(cell_size)
            else:
                cell = tf.contrib.rnn.BasicLSTMCell(cell_size,
                                                    activation=cell_activation)
            if rnn_dropout_keep_prob < 1.00:
                [cell], _ = core.rnn_dropout([cell], [rnn_dropout_keep_prob])
            cell_list.append(cell)
        cell = tf.contrib.rnn.MultiRNNCell(cell_list, state_is_tuple=True)
    else:
        if cell_type == 'GRU':
            cell = tf.contrib.rnn.GRUCell(cell_size)
        elif cell_type == 'BlockLSTM':
            cell = tf.contrib.rnn.LSTMBlockCell(cell_size)
        else:
            cell = tf.contrib.rnn.BasicLSTMCell(cell_size,
                                                activation=cell_activation)
        if rnn_dropout_keep_prob < 1.00:
            [cell], _ = core.rnn_dropout([cell], [rnn_dropout_keep_prob])
            """
			# change for GRU.  not yet working!
+       if cell_type == 'GRU':
+               state_placeholder = tf.placeholder(tf.float32, [num_layers, None, cell_size], name='state')
+               l = tf.unstack(state_placeholder, axis=0)
+               state = tf.reshape(state_placeholder, [None, num_layers, cell_size])
+       else:
+               state_placeholder = tf.placeholder(tf.float32, [num_layers, 2, None, cell_size], name='state')
+               l = tf.unstack(state_placeholder, axis=0)
+               state = tuple(
+                               [tf.nn.rnn_cell.LSTMStateTuple(l[idx][0], l[idx][1])
+                                for idx in range(num_layers)]
+                       )
"""
    state_placeholder = tf.placeholder(tf.float32,
                                       [num_layers, 2, None, cell_size],
                                       name='state')
    l = tf.unstack(state_placeholder, axis=0)
    state = tuple([
        tf.nn.rnn_cell.LSTMStateTuple(l[idx][0], l[idx][1])
        for idx in range(num_layers)
    ])
    outputs, final_state = tf.nn.dynamic_rnn(cell,
                                             emb_words,
                                             initial_state=state)

    final = tf.identity(final_state, name='final_state')
    output = tf.reshape(tf.concat(outputs, 1), [-1, cell_size])
    softmax_w = nlp.variable_with_weight_decay('softmax_w',
                                               [cell_size, vocab_size])
    softmax_b = nlp.variable_with_weight_decay('softmax_b', [vocab_size])

    logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
    logits = tf.reshape(logits, [-1, num_steps, vocab_size],
                        name='output_logits')
    if utils.get_dict_value(params, 'use_single_sm', False):
        smei = tf.placeholder(tf.int32, [None, None],
                              name='smei')  # softmax evaluation index
        exp_logits = tf.exp(logits)
        numerator = tf.gather_nd(
            exp_logits,
            tf.stack([
                tf.tile(tf.expand_dims(tf.range(tf.shape(smei)[0]), 1),
                        [1, tf.shape(smei)[1]]),
                tf.transpose(
                    tf.tile(tf.expand_dims(tf.range(tf.shape(smei)[1]), 1),
                            [1, tf.shape(smei)[0]])), smei
            ], 2))
        logits_smei = tf.divide(numerator, tf.reduce_sum(exp_logits, axis=-1),
                                'output_single_sm')
    logits_sm = tf.nn.softmax(logits, name='output_logits_sm')
    return [logits]