Ejemplo n.º 1
0
def bag_cross_max(x,
                  scope,
                  rel_tot,
                  is_training,
                  var_scope=None,
                  dropout_before=False,
                  keep_prob=1.0):
    """
    Cross-sentence Max-pooling proposed by (Jiang et al. 2016.)
    "Relation Extraction with Multi-instance Multi-label Convolutional Neural Networks"
    https://pdfs.semanticscholar.org/8731/369a707046f3f8dd463d1fd107de31d40a24.pdf
    """
    with tf.variable_scope(var_scope or "cross_max", reuse=tf.AUTO_REUSE):
        if dropout_before:
            x = dropout(x, keep_prob)
        bag_repre = []
        for i in range(scope.shape[0] - 1):
            bag_hidden_mat = x[scope[i]:scope[i + 1]]
            bag_repre.append(tf.reduce_max(
                bag_hidden_mat, 0))  # (n', hidden_size) -> (hidden_size)
        bag_repre = tf.stack(bag_repre)
        if not dropout_before:
            bag_repre = dropout(bag_repre, keep_prob)
        bag_logit = _logit(bag_repre, rel_tot)
        if not is_training:
            bag_logit = tf.nn.softmax(bag_logit)
    return bag_logit, bag_repre
Ejemplo n.º 2
0
def bag_attention(x,
                  scope,
                  instance_label,
                  rel_tot,
                  is_training,
                  var_scope=None,
                  dropout_before=False,
                  keep_prob=1.0):
    with tf.variable_scope(var_scope or "bag_attention", reuse=tf.AUTO_REUSE):
        if is_training:  # training
            if dropout_before:
                x = dropout(x, keep_prob)
            bag_repre = []
            attention_logit = _attention_train_logit(x, instance_label,
                                                     rel_tot)
            for i in range(scope.shape[0] - 1):
                bag_hidden_mat = x[scope[i]:scope[i + 1]]
                attention_score = tf.nn.softmax(
                    attention_logit[scope[i]:scope[i + 1]], -1)
                # (1, n') x (n', hidden_size) = (1, hidden_size) -> (hidden_size)
                bag_repre.append(
                    tf.squeeze(
                        tf.matmul(tf.expand_dims(attention_score, 0),
                                  bag_hidden_mat)))
            bag_repre = tf.stack(bag_repre)
            if not dropout_before:
                bag_repre = dropout(bag_repre, keep_prob)
            return _logit(bag_repre, rel_tot), bag_repre
        else:  # testing
            attention_logit = _attention_test_logit(x, rel_tot)  # (n, rel_tot)
            bag_repre = []
            bag_logit = []
            for i in range(scope.shape[0] - 1):
                bag_hidden_mat = x[scope[i]:scope[i + 1]]
                attention_score = tf.nn.softmax(
                    tf.transpose(attention_logit[scope[i]:scope[i + 1], :]),
                    -1)  # softmax of (rel_tot, n')
                bag_repre_for_each_rel = tf.matmul(
                    attention_score, bag_hidden_mat
                )  # (rel_tot, n') \dot (n', hidden_size) = (rel_tot, hidden_size)
                bag_logit_for_each_rel = _logit(
                    bag_repre_for_each_rel, rel_tot)  # -> (rel_tot, rel_tot)
                bag_repre.append(bag_repre_for_each_rel)
                bag_logit.append(
                    tf.diag_part(
                        tf.nn.softmax(bag_logit_for_each_rel,
                                      -1)))  # could be improved by sigmoid?
            bag_repre = tf.stack(bag_repre)
            bag_logit = tf.stack(bag_logit)
            return bag_logit, bag_repre
Ejemplo n.º 3
0
def cnn(x, mask=None, hidden_size=230, kernel_size=3, stride_size=1, activation=tf.nn.relu,
        var_scope=None, keep_prob=1.0):
    with tf.variable_scope(var_scope or ('cnn' if mask is None else 'pcnn'), reuse=tf.AUTO_REUSE):
        cnn_cell = _cnn_cell(x, hidden_size, kernel_size, stride_size)
        pool = _pooling(cnn_cell) if mask is None else _piecewise_pooling(cnn_cell, mask)

        return dropout(activation(pool), keep_prob)
Ejemplo n.º 4
0
def bag_one(x,
            scope,
            label,
            rel_tot,
            is_training,
            var_scope=None,
            dropout_before=False,
            keep_prob=1.0):
    with tf.variable_scope(var_scope or "maximum", reuse=tf.AUTO_REUSE):
        if is_training:  # training
            if dropout_before:
                x = dropout(x, keep_prob)
            bag_repre = []
            for i in range(scope.shape[0] - 1):
                bag_hidden_mat = x[scope[i]:scope[i + 1]]
                instance_logit = tf.nn.softmax(
                    _logit(bag_hidden_mat,
                           rel_tot), -1)  # (n', hidden_size)->(n', rel_tot)
                j = tf.argmax(instance_logit[:, label[i]],
                              output_type=tf.int32)
                bag_repre.append(bag_hidden_mat[j])
            bag_repre = tf.stack(bag_repre)
            if not dropout_before:
                bag_repre = dropout(bag_repre, keep_prob)
            return _logit(bag_repre, rel_tot), bag_repre
        else:  # testing
            if dropout_before:
                x = dropout(x, keep_prob)
            bag_repre = []
            bag_logit = []
            for i in range(scope.shape[0] - 1):
                bag_hidden_mat = x[scope[i]:scope[i + 1]]
                instance_logit = tf.nn.softmax(
                    _logit(bag_hidden_mat,
                           rel_tot), -1)  # (n', hidden_size)->(n', rel_tot)
                bag_logit.append(tf.reduce_max(instance_logit, 0))
                bag_repre.append(bag_hidden_mat[0])  # fake max repre
            bag_logit = tf.stack(bag_logit)
            bag_repre = tf.stack(bag_repre)

            return tf.nn.softmax(bag_logit), bag_repre
Ejemplo n.º 5
0
def rnn(x, length, hidden_size=230, cell_name='', bidirectional=False, var_scope=None, keep_prob=1.0):
    with tf.variable_scope(var_scope or ('birnn' if bidirectional else 'rnn'), reuse=tf.AUTO_REUSE):
        x = dropout(x, keep_prob)
        if bidirectional:
            bw_states, fw_states = birnn_states(x, length, hidden_size, cell_name)
            return tf.concat([fw_states, bw_states], axis=1)
        else:
            cell = _rnn_cell(hidden_size, cell_name)
            _, states = tf.nn.dynamic_rnn(cell, x, sequence_length=length, dtype=tf.float32, scope='dynamic_rnn')
            if isinstance(states, tuple):
                states = states[0]
            return states
Ejemplo n.º 6
0
def bag_average(x,
                scope,
                rel_tot,
                is_training,
                var_scope=None,
                dropout_before=False,
                keep_prob=1.0):
    with tf.variable_scope(var_scope or "average", reuse=tf.AUTO_REUSE):
        if dropout_before:
            x = dropout(x, keep_prob)
        bag_repre = []
        for i in range(scope.shape[0] - 1):
            bag_hidden_mat = x[scope[i]:scope[i + 1]]
            bag_repre.append(tf.reduce_mean(
                bag_hidden_mat, 0))  # (n', hidden_size) -> (hidden_size)
        bag_repre = tf.stack(bag_repre)
        if not dropout_before:
            bag_repre = dropout(bag_repre, keep_prob)

        bag_logit = _logit(bag_repre, rel_tot)
        if not is_training:
            bag_logit = tf.nn.softmax(bag_logit)
    return bag_logit, bag_repre
Ejemplo n.º 7
0
def resnet(x, filters, length=None, cell_name='lstm', bidirectional=False, mask=None, ib_num=4,
           kernel_size=3, stride_size=1, activation=tf.nn.relu, var_scope=None, keep_prob=1.0):
    with tf.variable_scope(var_scope or ('resnet' if mask is None else 'resnet_pcnn'), reuse=tf.AUTO_REUSE):
        seq = None if length is None else rnn(x, length, filters[1], cell_name, bidirectional, keep_prob=keep_prob)
        x = _cnn_cell(x, filters[1], kernel_size, stride_size, activation=activation)
        # x = tf.expand_dims(_pooling(x), axis=1) if mask is None else _piecewise_pooling(x, mask, True)
        for i in range(ib_num):
            h1 = _cnn_cell(x, filters[0], kernel_size, stride_size, activation=activation,
                           var_scope='conv_' + str(i) + 'a')
            h2 = _cnn_cell(h1, filters[1], kernel_size, stride_size, activation=activation,
                           var_scope='conv_' + str(i) + 'b')
            x = h2 + x
        x = _pooling(x) if mask is None else _piecewise_pooling(x, mask)
        # x = tf.squeeze(x) if mask is None else tf.reshape(x, [-1, x.shape[-1] * x.shape[-2]])
        # x = conv_block(x, kernel_size, [hidden_size, hidden_size, 256], stage=2, block='a',
        #                strides=(stride_size, stride_size))
        # x = identity_block(x, kernel_size, [hidden_size, hidden_size, 256], stage=2, block='b')
        # x = identity_block(x, kernel_size, [hidden_size, hidden_size, 256], stage=2, block='c')
        x = dropout(activation(x), keep_prob)
        return x if seq is None else tf.concat([seq, x], axis=1)
Ejemplo n.º 8
0
def instance(x, rel_tot, var_scope=None, keep_prob=1.0):
    with tf.variable_scope(var_scope or "instance", reuse=tf.AUTO_REUSE):
        x = dropout(x, keep_prob)
        return _logit(x, rel_tot), x