Ejemplo n.º 1
0
    def draw_dataset_dict(self, dic):
        """
        Draw annotations in Detectron2 Dataset format.

        Args:
            dic (dict): annotation data of one image, in Detectron2 Dataset format.

        Returns:
            output (VisImage): image object with visualizations.
        """
        annos = dic.get("annotations", None)
        if annos:
            boxes = [
                BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS)
                for x in annos
            ]

            labels = [x["category_id"] for x in annos]
            names = self.metadata.get("thing_classes", None)
            if names:
                labels = [names[i] for i in labels]
            labels = [
                "{}".format(i) + ("|crowd" if a.get("iscrowd", 0) else "")
                for i, a in zip(labels, annos)
            ]
            self.overlay_instances(labels=labels, boxes=boxes)

        return self.output
Ejemplo n.º 2
0
def instances_to_coco_json(instances, img_id):
    """
    Dump an "Instances" object to a COCO-format json that's used for evaluation.

    Args:
        instances (Instances):
        img_id (int): the image id

    Returns:
        list[dict]: list of json annotations in COCO format.
    """
    num_instance = len(instances)
    if num_instance == 0:
        return []

    boxes = instances.pred_boxes.tensor.numpy()
    boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
    boxes = boxes.tolist()
    scores = instances.scores.tolist()
    classes = instances.pred_classes.tolist()

    results = []
    for k in range(num_instance):
        result = {
            "image_id": img_id,
            "category_id": classes[k],
            "bbox": boxes[k],
            "score": scores[k],
        }
        results.append(result)
    return results
Ejemplo n.º 3
0
def annotations_to_instances(annos, image_size):
    """
    Create an :class:`Instances` object used by the models,
    from instance annotations in the dataset dict.

    Args:
        annos (list[dict]): a list of instance annotations in one image, each
            element for one instance.
        image_size (tuple): height, width

    Returns:
        Instances:
            It will contain fields "gt_boxes", "gt_classes",
            if they can be obtained from `annos`.
            This is the format that builtin models expect.
    """
    boxes = [
        BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS)
        for obj in annos
    ]
    target = Instances(image_size)
    boxes = target.gt_boxes = Boxes(boxes)
    boxes.clip(image_size)

    classes = [obj["category_id"] for obj in annos]
    classes = torch.tensor(classes, dtype=torch.int64)
    target.gt_classes = classes

    return target
Ejemplo n.º 4
0
def create_instances(predictions, image_size):
    ret = Instances(image_size)

    score = np.asarray([x["score"] for x in predictions])
    chosen = (score > args.conf_threshold).nonzero()[0]
    score = score[chosen]
    bbox = np.asarray([predictions[i]["bbox"] for i in chosen])
    bbox = BoxMode.convert(bbox, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)

    labels = np.asarray([dataset_id_map(predictions[i]["category_id"]) for i in chosen])

    ret.scores = score
    ret.pred_boxes = Boxes(bbox)
    ret.pred_classes = labels

    try:
        ret.pred_masks = [predictions[i]["segmentation"] for i in chosen]
    except KeyError:
        pass
    return ret
Ejemplo n.º 5
0
def transform_proposals(dataset_dict, image_shape, transforms,
                        min_box_side_len, proposal_topk):
    """
    Apply transformations to the proposals in dataset_dict, if any.

    Args:
        dataset_dict (dict): a dict read from the dataset, possibly
            contains fields "proposal_boxes", "proposal_objectness_logits", "proposal_bbox_mode"
        image_shape (tuple): height, width
        transforms (TransformList):
        min_box_side_len (int): keep proposals with at least this size
        proposal_topk (int): only keep top-K scoring proposals

    The input dict is modified in-place, with abovementioned keys removed. A new
    key "proposals" will be added. Its value is an `Instances`
    object which contains the transformed proposals in its field
    "proposal_boxes" and "objectness_logits".
    """
    if "proposal_boxes" in dataset_dict:
        # Transform proposal boxes
        boxes = transforms.apply_box(
            BoxMode.convert(
                dataset_dict.pop("proposal_boxes"),
                dataset_dict.pop("proposal_bbox_mode"),
                BoxMode.XYXY_ABS,
            ))
        boxes = Boxes(boxes)
        objectness_logits = torch.as_tensor(
            dataset_dict.pop("proposal_objectness_logits").astype("float32"))

        boxes.clip(image_shape)
        keep = boxes.nonempty(threshold=min_box_side_len)
        boxes = boxes[keep]
        objectness_logits = objectness_logits[keep]

        proposals = Instances(image_shape)
        proposals.proposal_boxes = boxes[:proposal_topk]
        proposals.objectness_logits = objectness_logits[:proposal_topk]
        dataset_dict["proposals"] = proposals
Ejemplo n.º 6
0
def gen_crop_transform_with_instance(crop_size, image_size, instance):
    """
    Generate a CropTransform so that the cropping region contains
    the center of the given instance.

    Args:
        crop_size (tuple): h, w in pixels
        image_size (tuple): h, w
        instance (dict): an annotation dict of one instance, in Detectron2's
            dataset format.
    """
    crop_size = np.asarray(crop_size, dtype=np.int32)
    bbox = BoxMode.convert(instance["bbox"], instance["bbox_mode"],
                           BoxMode.XYXY_ABS)
    center_yx = (bbox[1] + bbox[3]) * 0.5, (bbox[0] + bbox[2]) * 0.5

    min_yx = np.maximum(np.floor(center_yx).astype(np.int32) - crop_size, 0)
    max_yx = np.maximum(np.asarray(image_size, dtype=np.int32) - crop_size, 0)
    max_yx = np.minimum(max_yx, np.ceil(center_yx).astype(np.int32))

    y0 = np.random.randint(min_yx[0], max_yx[0] + 1)
    x0 = np.random.randint(min_yx[1], max_yx[1] + 1)
    return T.CropTransform(x0, y0, crop_size[1], crop_size[0])
Ejemplo n.º 7
0
def transform_instance_annotations(annotation, transforms, image_size):
    """
    Apply transforms to box of annotations of a single instance.

    It will use `transforms.apply_box` for the box,.
    If you need anything more specially designed for each data structure,
    you'll need to implement your own version of this function or the transforms.

    Args:
        annotation (dict): dict of instance annotations for a single instance.
        transforms (TransformList):
        image_size (tuple): the height, width of the transformed image

    Returns:
        dict: the same input dict with fields "bbox" transformed according to
              `transforms`. The "bbox_mode" field will be set to XYXY_ABS.
    """
    bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"],
                           BoxMode.XYXY_ABS)
    # Note that bbox is 1d (per-instance bounding box)
    annotation["bbox"] = transforms.apply_box([bbox])[0]
    annotation["bbox_mode"] = BoxMode.XYXY_ABS

    return annotation
Ejemplo n.º 8
0
Archivo: coco.py Proyecto: Anqw/FS3C
def convert_to_coco_dict(dataset_name):
    """
    Convert a dataset in detectron2's standard format into COCO json format

    Generic dataset description can be found here:
    https://detectron2.readthedocs.io/tutorials/datasets.html#register-a-dataset

    COCO data format description can be found here:
    http://cocodataset.org/#format-data

    Args:
        dataset_name:
            name of the source dataset
            must be registered in DatastCatalog and in detectron2's standard format
    Returns:
        coco_dict: serializable dict in COCO json format
    """

    dataset_dicts = DatasetCatalog.get(dataset_name)
    categories = [{
        "id": id,
        "name": name
    } for id, name in enumerate(
        MetadataCatalog.get(dataset_name).thing_classes)]

    logger.info("Converting dataset dicts into COCO format")
    coco_images = []
    coco_annotations = []

    for image_id, image_dict in enumerate(dataset_dicts):
        coco_image = {
            "id": image_dict.get("image_id", image_id),
            "width": image_dict["width"],
            "height": image_dict["height"],
            "file_name": image_dict["file_name"],
        }
        coco_images.append(coco_image)

        anns_per_image = image_dict["annotations"]
        for annotation in anns_per_image:
            # create a new dict with only COCO fields
            coco_annotation = {}

            # COCO requirement: XYWH box format
            bbox = annotation["bbox"]
            bbox_mode = annotation["bbox_mode"]
            bbox = BoxMode.convert(bbox, bbox_mode, BoxMode.XYWH_ABS)

            # Computing areas using bounding boxes
            bbox_xy = BoxMode.convert(bbox, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
            area = Boxes([bbox_xy]).area()[0].item()

            # COCO requirement:
            #   linking annotations to images
            #   "id" field must start with 1
            coco_annotation["id"] = len(coco_annotations) + 1
            coco_annotation["image_id"] = coco_image["id"]
            coco_annotation["bbox"] = [round(float(x), 3) for x in bbox]
            coco_annotation["area"] = area
            coco_annotation["category_id"] = annotation["category_id"]
            coco_annotation["iscrowd"] = annotation.get("iscrowd", 0)

            coco_annotations.append(coco_annotation)

    logger.info(
        "Conversion finished, "
        f"num images: {len(coco_images)}, num annotations: {len(coco_annotations)}"
    )

    info = {
        "date_created": str(datetime.datetime.now()),
        "description":
        "Automatically generated COCO json file for Detectron2.",
    }
    coco_dict = {
        "info": info,
        "images": coco_images,
        "annotations": coco_annotations,
        "categories": categories,
        "licenses": None,
    }
    return coco_dict