Ejemplo n.º 1
0
 def getDetectionStat(self):
     '''
     Returns numpy with columns:
       keypointsCount;
       keypointsTime;
       segmentationTime;
       classificationTime;
       rawClsTime;
       textLineTime;
       wallTime;
       classificationTimeTuples;
       tuplesTime;
       strokesTime;
       gcTime;
     '''
     return ftext.getDetectionStat()
Ejemplo n.º 2
0
 def getDetectionStat(self):
     return ftext.getDetectionStat()
Ejemplo n.º 3
0
def run_evaluation(inputDir, outputDir, invert=False, isFp=False):

    if not os.path.exists(outputDir):
        os.mkdir(outputDir)

    images = glob.glob('{0}/*.jpg'.format(inputDir))
    images.extend(glob.glob('{0}/*.JPG'.format(inputDir)))
    images.extend(glob.glob('{0}/*.png'.format(inputDir)))
    segmDir = '{0}/segmentations'.format(inputDir)

    for image in images:
        print('Processing {0}'.format(image))

        img = cv2.imread(image, 0)
        imgc = cv2.imread(image)
        imgproc = img

        imgKp = np.copy(img)
        imgKp.fill(0)

        baseName = os.path.basename(image)
        baseName = baseName[:-4]
        workPoint = 0.3
        segmentations = ftext.getCharSegmentations(
            imgproc)  #, outputDir, baseName)
        segmentations = segmentations[:, 0:10]
        segmentations = np.column_stack([
            segmentations,
            np.zeros((segmentations.shape[0], 2), dtype=np.float)
        ])
        maskDuplicates = segmentations[:, 8] == -1
        segmentationsDuplicates = segmentations[maskDuplicates, :]
        maskNoNei = segmentationsDuplicates[:, 9] > workPoint
        segmentationsNoNei = segmentationsDuplicates[maskNoNei, :]
        keypoints = ftext.getLastDetectionKeypoints()
        imgKp[keypoints[:, 1].astype(int), keypoints[:, 0].astype(int)] = 255
        scales = ftext.getImageScales()
        statc = ftext.getDetectionStat()
        words = ftext.findTextLines()
        segmLine = segmentations[segmentations[:, 7] == 1.0, :]
        segmentations[:, 2] += segmentations[:, 0]
        segmentations[:, 3] += segmentations[:, 1]

        if isFp:
            for detId in range(0, segmentations.shape[0]):
                ftext.acummulateCharFeatures(0, detId)

            continue

        lineGt = '{0}/gt_{1}.txt'.format(inputDir, baseName)
        if not os.path.exists(lineGt):
            lineGt = '{0}/{1}.txt'.format(inputDir, baseName)

        lineGt = '{0}/gt_{1}.txt'.format(inputDir, baseName)
        if os.path.exists(lineGt):
            try:
                word_gt = utls.read_icdar2013_txt_gt(lineGt)
            except ValueError:
                try:
                    word_gt = utls.read_icdar2013_txt_gt(lineGt, separator=',')
                except ValueError:
                    word_gt = utls.read_icdar2015_txt_gt(lineGt, separator=',')
        else:
            lineGt = '{0}/{1}.txt'.format(inputDir, baseName)
            word_gt = utls.read_mrrc_txt_gt(lineGt, separator=',')

        rWcurrent = 0.0
        for gt_box in word_gt:
            if len(gt_box[4]) == 1:
                continue
            best_match = 0
            cv2.rectangle(imgc, (gt_box[0], gt_box[1]), (gt_box[2], gt_box[3]),
                          (0, 255, 0))
            for det_word in words:
                rect_int = utils.intersect(det_word, gt_box)
                int_area = utils.area(rect_int)
                union_area = utils.area(utils.union(det_word, gt_box))

                if union_area == 0:
                    continue

                ratio = int_area / float(union_area)
                det_word[11] = max(det_word[11], ratio)

                if ratio > best_match:
                    best_match = ratio
            rWcurrent += best_match

            best_match = 0
            for detId in range(segmentations.shape[0]):
                rectn = segmentations[detId, :]
                rect_int = utils.intersect(rectn, gt_box)
                int_area = utils.area(rect_int)
                union_area = utils.area(utils.union(rectn, gt_box))

                ratio = int_area / float(union_area)
                rectn[11] = max(ratio, rectn[11])
                if ratio > best_match:
                    best_match = ratio
                if ratio > 0.7:

                    #print( "Word Match!" )
                    #tmp = ftext.getSegmentationMask(detId)
                    #cv2.imshow("ts", tmp)
                    #cv2.waitKey(0)

                    ftext.acummulateCharFeatures(2, detId)

        segmImg = '{0}/{1}_GT.bmp'.format(segmDir, baseName)
        if not os.path.exists(segmImg):
            segmImg = '{0}/gt_{1}.png'.format(segmDir, baseName)
        if not os.path.exists(segmImg):
            segmImg = '{0}/{1}.png'.format(segmDir, baseName)
        segmImg = cv2.imread(segmImg, 0)
        if invert and segmImg is not None:
            segmImg = ~segmImg

        gt_rects = []
        miss_rects = []
        segmGt = '{0}/{1}_GT.txt'.format(segmDir, baseName)
        if os.path.exists(segmGt) and False:
            (gt_rects, groups) = utls.read_icdar2013_segm_gt(segmGt)
            segmImg = '{0}/{1}_GT.bmp'.format(segmDir, baseName)
            if not os.path.exists(segmImg):
                segmImg = '{0}/gt_{1}.png'.format(segmDir, baseName)
            segmImg = cv2.imread(segmImg)
        else:
            contours = cv2.findContours(np.copy(segmImg),
                                        mode=cv2.RETR_EXTERNAL,
                                        method=cv2.CHAIN_APPROX_SIMPLE)[1]
            for cont in contours:
                rect = cv2.boundingRect(cont)
                rect = [
                    rect[0], rect[1], rect[0] + rect[2], rect[1] + rect[3],
                    '?', 0, 0
                ]
                gt_rects.append(rect)

        for detId in range(segmentations.shape[0]):
            rectn = segmentations[detId, :]

            for k in range(len(gt_rects)):
                gt_rect = gt_rects[k]
                best_match = 0
                best_match_line = 0
                if (gt_rect[4] == ',' or gt_rect[4] == '.'
                        or gt_rect[4] == '\'' or gt_rect[4] == ':'
                        or gt_rect[4] == '-') and not evalPunctuation:
                    continue

                minSingleOverlap = MIN_SEGM_OVRLAP
                if gt_rect[4] == 'i' or gt_rect[4] == '!':
                    minSingleOverlap = 0.5

                rect_int = utils.intersect(rectn, gt_rect)
                int_area = utils.area(rect_int)
                union_area = utils.area(utils.union(rectn, gt_rect))
                ratio = int_area / float(union_area)
                rectn[10] = max(ratio, rectn[10])

                if rectn[9] > workPoint:
                    gt_rect[6] = max(ratio, gt_rect[6])

                if ratio > best_match:
                    best_match = ratio

                if ratio > best_match_line and rectn[7] == 1.0:
                    best_match_line = ratio
                if ratio > minSingleOverlap:
                    ftext.acummulateCharFeatures(1, detId)

                if ratio < minSingleOverlap:
                    if k < len(gt_rects) - 1:
                        gt_rect2 = gt_rects[k + 1]
                        chars2Rect = utils.union(gt_rect2, gt_rect)
                        rect_int = utils.intersect(rectn, chars2Rect)
                        int_area = utils.area(rect_int)
                        union_area = utils.area(utils.union(rectn, chars2Rect))
                        ratio = int_area / float(union_area)
                        rectn[10] = max(ratio, rectn[10])

                        if ratio > 0.8:
                            best_match2 = ratio
                            gt_rect[5] = ratio
                            gt_rect2[5] = ratio
                            ftext.acummulateCharFeatures(2, detId)

                thickness = 1
                color = (255, 0, 255)
                if best_match >= minSingleOverlap:
                    color = (0, 255, 0)
                if best_match > 0.7:
                    thickness = 2
                cv2.rectangle(imgc, (gt_rect[0], gt_rect[1]),
                              (gt_rect[2], gt_rect[3]), color, thickness)

            if rectn[10] == 0 and rectn[11] == 0:
                ftext.acummulateCharFeatures(0, detId)
        '''
Ejemplo n.º 4
0
Archivo: ft.py Proyecto: AAAyag/FASText
 def getDetectionStat(self):
     return ftext.getDetectionStat()
Ejemplo n.º 5
0
def run_words(inputDir, outputDir, invert=False):

    if not os.path.exists(outputDir):
        os.mkdir(outputDir)

    #images = glob.glob('{0}/*.png'.format('/datagrid/personal/TextSpotter/evaluation-sets/MS-text_database'))
    #images = glob.glob('{0}/*.jpg'.format('/datagrid/personal/TextSpotter/evaluation-sets/neocr_dataset'))
    images = glob.glob('{0}/*.jpg'.format(inputDir))
    images.extend(glob.glob('{0}/*.JPG'.format(inputDir)))
    images.extend(glob.glob('{0}/*.png'.format(inputDir)))

    matched_words = 0
    word_count = 0

    for image in sorted(images):
        print('Processing {0}'.format(image))

        img = cv2.imread(image, 0)
        imgc = cv2.imread(image)
        imgproc = img

        imgKp = np.copy(img)
        imgKp.fill(0)

        baseName = os.path.basename(image)
        baseName = baseName[:-4]
        workPoint = 0.3
        segmentations = ftext.getCharSegmentations(
            imgproc)  #, outputDir, baseName)
        segmentations = segmentations[:, 0:10]
        segmentations = np.column_stack([
            segmentations,
            np.zeros((segmentations.shape[0], 2), dtype=np.float)
        ])
        maskDuplicates = segmentations[:, 8] == -1
        segmentationsDuplicates = segmentations[maskDuplicates, :]
        maskNoNei = segmentationsDuplicates[:, 9] > workPoint
        keypoints = ftext.getLastDetectionKeypoints()
        imgKp[keypoints[:, 1].astype(int), keypoints[:, 0].astype(int)] = 255
        scales = ftext.getImageScales()
        statc = ftext.getDetectionStat()
        words = ftext.findTextLines()
        segmentations[:, 2] += segmentations[:, 0]
        segmentations[:, 3] += segmentations[:, 1]

        lineGt = '{0}/gt_{1}.txt'.format(inputDir, baseName)
        if not os.path.exists(lineGt):
            lineGt = '{0}/{1}.txt'.format(inputDir, baseName)

        lineGt = '{0}/gt_{1}.txt'.format(inputDir, baseName)
        if os.path.exists(lineGt):
            try:
                word_gt = utls.read_icdar2013_txt_gt(lineGt)
            except ValueError:
                try:
                    word_gt = utls.read_icdar2013_txt_gt(lineGt, separator=',')
                except ValueError:
                    word_gt = utls.read_icdar2015_txt_gt(lineGt, separator=',')
        else:
            lineGt = '{0}/{1}.txt'.format(inputDir, baseName)
            word_gt = utls.read_mrrc_txt_gt(lineGt, separator=',')

        cw = 0
        for detId in range(segmentations.shape[0]):
            best_match = 0

            for gt_box in word_gt:
                if len(gt_box[4]) == 1:
                    continue
                if gt_box[4][0] == "#":
                    continue
                cw += 1

                rectn = segmentations[detId, :]
                rect_int = utils.intersect(rectn, gt_box)
                int_area = utils.area(rect_int)
                union_area = utils.area(utils.union(rectn, gt_box))

                ratio = int_area / float(union_area)
                rectn[11] = max(ratio, rectn[11])
                if ratio > best_match:
                    best_match = ratio
                if ratio > 0.7:

                    #print( "Word Match!" )
                    #cv2.rectangle(imgc, (rectn[0], rectn[1]), (rectn[2], rectn[3]), (0, 255, 0))
                    #cv2.imshow("ts", imgc)
                    #cv2.waitKey(0)
                    ftext.acummulateCharFeatures(2, detId)
                    if gt_box[5] != -1:
                        matched_words += 1
                    gt_box[5] = -1

            if best_match == 0:
                ftext.acummulateCharFeatures(0, detId)

        word_count += cw
        print("word recall: {0}".format(matched_words / float(word_count)))