Ejemplo n.º 1
0
 def evaluate(self, x_val, y_val):
     x_val = DataSet.preprocess(x_val, "image")
     y_val = DataSet.preprocess(y_val, "mask")
     fit_loss = sigmoid_dice_loss
     fit_metrics = [binary_acc_ch0]
     self.model.compile(loss=fit_loss,
                        optimizer="Adam",
                        metrics=fit_metrics)
     # Score trained model.
     scores = self.model.evaluate(x_val, y_val, batch_size=5, verbose=1)
     print('Test loss:', scores[0])
     print('Test accuracy:', scores[1])
Ejemplo n.º 2
0
    def predict_and_save_stage1_masks(self, h5_data_path, h5_result_saved_path, fold_k=0, batch_size=4):
        """
        从h5data中读取images进行预测,并把预测mask保存进h5data中。
        Args:
            h5_data_path: str, 存放有训练数据的h5文件路径。
            batch_size: int, 批大小。

        Returns: None.

        """

        f_result = h5py.File(h5_result_saved_path, "a")
        try:
            stage1_predict_masks_grp = f_result.create_group("stage1_fold{}_predict_masks".format(fold_k))
        except:
            stage1_predict_masks_grp = f_result["stage1_fold{}_predict_masks".format(fold_k)]

        dataset = DataSet(h5_data_path, fold_k)

        images_train = dataset.get_images(is_train=True)
        images_val = dataset.get_images(is_train=False)
        keys_train = dataset.get_keys(is_train=True)
        keys_val = dataset.get_keys(is_train=False)
        images = np.concatenate([images_train, images_val], axis=0)
        keys = np.concatenate([keys_train, keys_val], axis=0)
        print("predicting ...")
        images = dataset.preprocess(images, mode="image")
        y_pred = self.predict(images, batch_size, use_channels=1)
        print(y_pred.shape)
        print("Saving predicted masks ...")
        for i, key in enumerate(keys):
            stage1_predict_masks_grp.create_dataset(key, dtype=np.float32, data=y_pred[i])
        print("Done.")
Ejemplo n.º 3
0
    def predict_and_show(self, image, show_output_channels):
        """
        
        Args:
            img: str(image path) or numpy array(b=1, h=576, w=576, c=1)
            show_output_channels: 1 or 2

        Returns:

        """
        if isinstance(image, str):
            images_src = self.read_images([image])
        else:
            images_src = image
        img = DataSet.preprocess(images_src, mode="image")
        predict_mask = self.predict(img, 1, use_channels=show_output_channels)
        predict_mask = np.squeeze(predict_mask, axis=0)
        predict_mask = self.postprocess(predict_mask)
        predict_mask = DataSet.de_preprocess(predict_mask, mode="mask")
        if show_output_channels == 2:
            mask0 = predict_mask[..., 0]
            mask1 = predict_mask[..., 1]
            image_c3 = np.concatenate([np.squeeze(images_src, axis=0) for i in range(3)], axis=-1)
            image_mask0 = apply_mask(image_c3, mask0, color=[255, 106, 106], alpha=0.5)
            # result = np.concatenate((np.squeeze(images_src, axis=[0, -1]), mask0, mask1, image_mask0), axis=1)
            plt.imshow(image_mask0)
        else:
            result = np.concatenate((np.squeeze(images_src, axis=[0, -1]), predict_mask), axis=1)
            plt.imshow(result, cmap="gray")

        plt.show()
Ejemplo n.º 4
0
    def predict(self, images, batch_size, use_channels=2):
        """
        对未预处理过的图片进行预测。
        Args:
            images: 4-d numpy array. preprocessed image. (b, h, w, c=1)
            batch_size:
            use_channels: int, default to 2. 如果模型输出通道数为2,可以控制输出几个channel.默认输出第一个channel的预测值.

        Returns: 4-d numpy array.

        """
        images = DataSet.preprocess(images, mode="image")

        outputs = self.model.predict(images, batch_size)
        if use_channels == 1:
            outputs = outputs[..., 0]
            outputs = np.expand_dims(outputs, -1)
        return outputs
Ejemplo n.º 5
0
def do_predict_custom():
    model = get_dilated_unet(
        input_shape=(None, None, 1),
        mode='cascade',
        filters=32,
        n_class=1
    )
    model_weights = "/home/topsky/helloworld/study/njai_challenge/cbct/func/others_try/model_weights.hdf5"
    img_path = "/media/topsky/HHH/jzhang_root/data/njai/cbct/CBCT_testingset/CBCT_testingset/04+246ori.tif"
    img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
    img = np.expand_dims(img, axis=-1)
    img = np.expand_dims(img, axis=0)
    img = DataSet.preprocess(img, mode="image")
    # print(img.shape)
    # exit()
    model.load_weights(model_weights)
    pred = model.predict(img, batch_size=1)
    pred_img = np.squeeze(pred[0], -1)
    pred_img = DataSet.de_preprocess(pred_img, mode="image")
    plt.imshow(pred_img, "gray")
    plt.show()
Ejemplo n.º 6
0
def tta_test():
    img = cv2.imread(
        "/media/topsky/HHH/jzhang_root/data/njai/cbct/CBCT_testingset/CBCT_testingset/04+246ori.tif",
        cv2.IMREAD_GRAYSCALE)
    img = np.expand_dims(img, axis=-1)
    img = DataSet.preprocess(img, mode="image")
    img = np.expand_dims(img, axis=0)

    model = get_densenet121_unet_sigmoid_gn(input_shape=(None, None, 1),
                                            output_channels=2,
                                            weights=None)
    model.load_weights(
        "/home/topsky/helloworld/study/njai_challenge/cbct/model_weights/20180731_0/best_val_acc_se_densenet_gn_fold0_random_0_1i_2o_20180801.h5"
    )
    pred = tta_predict(model, img, batch_size=1)
    # print(pred)
    pred = np.squeeze(pred, 0)
    print(pred.shape)
    pred = np.where(pred > 0.5, 255, 0)
    cv2.imwrite("/home/topsky/Desktop/mask_04+246ori_f1_random.tif", pred[...,
                                                                          0])
Ejemplo n.º 7
0
    def predict_from_files_old(self, image_path_lst, batch_size=5, use_channels=2, mask_file_lst=None, tta=False,
                               is_save_npy=False, is_save_mask0=False, is_save_mask1=False, result_save_dir=""):
        """
        给定图片路径列表,返回预测结果(未处理过的),如果指定了预测结果保存路径,则保存预测结果(已处理过的)。
        如果指定了预测结果保存的文件名列表,则该列表顺序必须与image_path_lst一致;
        如果没有指定预测结果保存的文件名列表,则自动生成和输入相同的文件名列表。
        Args:
            image_path_lst: list.
            batch_size:
            use_channels: 输出几个channel。
            mask_file_lst: list, 预测结果保存的文件名列表。
            tta: bool, 预测时是否进行数据增强。
            is_save_npy: bool, 是否保存npy文件。
            is_save_mask0: bool
            is_save_mask1: bool
            result_save_dir: str, 结果保存的目录路径。
        Returns: 4-d numpy array, predicted result.

        """
        imgs = self.read_images(image_path_lst)
        imgs = DataSet.preprocess(imgs, mode="image")
        if tta:
            pred = tta_predict(self.model, imgs, batch_size=batch_size)
        else:
            pred = self.predict_old(imgs, batch_size=batch_size, use_channels=use_channels)
        if mask_file_lst is None:
            mask_file_lst = [os.path.basename(x) for x in image_path_lst]
        if is_save_npy:
            # 保存npy文件
            npy_dir = os.path.join(result_save_dir, "npy")
            self.save_npy(pred, mask_file_lst, npy_dir)
        if is_save_mask0:
            mask_nb = 0
            mask_save_dir = os.path.join(result_save_dir, "mask{}".format(mask_nb))
            self.save_mask(pred, mask_file_lst, mask_nb=mask_nb, result_save_dir=mask_save_dir)
        if is_save_mask1:
            mask_nb = 1
            mask_save_dir = os.path.join(result_save_dir, "mask{}".format(mask_nb))
            self.save_mask(pred, mask_file_lst, mask_nb=mask_nb, result_save_dir=mask_save_dir)
        return pred
Ejemplo n.º 8
0
def inference_2stages_from_files(model_def_stage1, model_weights_stage1, model_def_stage2, model_weights_stage2,
                                 file_dir, pred_save_dir):
    if not os.path.isdir(pred_save_dir):
        os.makedirs(pred_save_dir)
    model_obj = ModelDeployment(model_def_stage1, model_weights_stage1)
    file_path_lst = get_file_path_list(file_dir, ext=".tif")
    dst_file_path_lst = [os.path.join(pred_save_dir, os.path.basename(x)) for x in file_path_lst]

    imgs_src = model_obj.read_images(file_path_lst)
    imgs = DataSet.preprocess(imgs_src, mode="image")
    pred_stage1 = model_obj.predict(imgs, batch_size=5, use_channels=1)
    pred_stage1 = np.expand_dims(pred_stage1, axis=-1)
    input_stage2 = np.concatenate([imgs_src, pred_stage1], axis=-1)
    del model_obj
    print(pred_stage1.shape)
    print(input_stage2.shape)
    model_obj = ModelDeployment(model_def_stage2, model_weights_stage2)

    pred = model_obj.predict(input_stage2, batch_size=5, use_channels=1)
    pred = model_obj.postprocess(pred)
    pred = DataSet.de_preprocess(pred, mode="mask")
    for i in range(len(pred)):
        cv2.imwrite(dst_file_path_lst[i], pred[i])
Ejemplo n.º 9
0
    def predict_from_h5data_old(self, h5_data_path, val_fold_nb, is_train=False, save_dir=None,
                                color_lst=None):
        dataset = DataSet(h5_data_path, val_fold_nb)

        images = dataset.get_images(is_train=is_train)
        imgs_src = np.concatenate([images for i in range(3)], axis=-1)
        masks = dataset.get_masks(is_train=is_train, mask_nb=0)
        masks = np.squeeze(masks, axis=-1)
        print("predicting ...")
        y_pred = self.predict(dataset.preprocess(images, mode="image"), batch_size=4, use_channels=1)
        y_pred = self.postprocess(y_pred)
        y_pred = DataSet.de_preprocess(y_pred, mode="mask")
        print(y_pred.shape)

        if save_dir:
            keys = dataset.get_keys(is_train)
            if color_lst is None:
                color_gt = [255, 106, 106]
                color_pred = [0, 191, 255]
                # color_pred = [255, 255, 0]
            else:
                color_gt = color_lst[0]
                color_pred = color_lst[1]
            # BGR to RGB
            imgs_src = imgs_src[..., ::-1]
            image_masks = [apply_mask(image, mask, color_gt, alpha=0.5) for image, mask in zip(imgs_src, masks)]
            image_preds = [apply_mask(image, mask, color_pred, alpha=0.5) for image, mask in zip(imgs_src, y_pred)]
            dst_image_path_lst = [os.path.join(save_dir, "{:03}.tif".format(int(key))) for key in keys]
            if not os.path.isdir(save_dir):
                os.makedirs(save_dir)
            image_mask_preds = np.concatenate([imgs_src, image_masks, image_preds], axis=2)
            for i in range(len(image_masks)):
                cv2.imwrite(dst_image_path_lst[i], image_mask_preds[i])
            print("Done.")
        else:
            return y_pred