def test02_1d_dirichlet_higher_order(self): mesh = Mesh1D() for etype in ['Q2', 'Q3']: element = QuadFE(1, etype) dofhandler = DofHandler(mesh, element) dofhandler.distribute_dofs() # Basis functions ux = Basis(dofhandler, 'ux') u = Basis(dofhandler, 'u') # Exact solution ue = Nodal(f=lambda x: x * (1 - x), basis=u) # Define coefficient functions one = Constant(1) two = Constant(2) # Define forms a = Form(kernel=Kernel(one), trial=ux, test=ux) L = Form(kernel=Kernel(two), test=u) problem = [a, L] # Assemble problem assembler = Assembler(problem, mesh) assembler.assemble() A = assembler.get_matrix() b = assembler.get_vector() # Set up linear system system = LinearSystem(u, A=A, b=b) # Boundary functions bnd_left = lambda x: np.abs(x) < 1e-9 bnd_right = lambda x: np.abs(1 - x) < 1e-9 # Mark mesh mesh.mark_region('left', bnd_left, entity_type='vertex') mesh.mark_region('right', bnd_right, entity_type='vertex') # Add Dirichlet constraints to system system.add_dirichlet_constraint('left', 0) system.add_dirichlet_constraint('right', 0) # Solve system system.solve_system() system.resolve_constraints() # Compare solution with the exact solution ua = system.get_solution(as_function=True) self.assertTrue(np.allclose(ua.data(), ue.data()))
def test09_1d_inverse(self): """ Compute the inverse of a matrix and apply it to a vector/matrix. """ # # Mesh # mesh = Mesh1D(resolution=(1, )) mesh.mark_region('left', lambda x: np.abs(x) < 1e-9, on_boundary=True) mesh.mark_region('right', lambda x: np.abs(1 - x) < 1e-9, on_boundary=True) # # Elements # Q3 = QuadFE(1, 'Q3') dofhandler = DofHandler(mesh, Q3) dofhandler.distribute_dofs() # # Basis # u = Basis(dofhandler, 'u') ux = Basis(dofhandler, 'ux') # # Define sampled right hand side and exact solution # xv = dofhandler.get_dof_vertices() n_points = dofhandler.n_dofs() n_samples = 6 a = np.arange(n_samples) ffn = lambda x, a: a * x ufn = lambda x, a: a / 6 * (x - x**3) + x fdata = np.zeros((n_points, n_samples)) udata = np.zeros((n_points, n_samples)) for i in range(n_samples): fdata[:, i] = ffn(xv, a[i]).ravel() udata[:, i] = ufn(xv, a[i]).ravel() # Define sampled function fn = Nodal(data=fdata, basis=u) ue = Nodal(data=udata, basis=u) # # Forms # one = Constant(1) a = Form(Kernel(one), test=ux, trial=ux) L = Form(Kernel(fn), test=u) problem = [[a], [L]] # # Assembler # assembler = Assembler(problem, mesh) assembler.assemble() A = assembler.get_matrix() b = assembler.get_vector(i_problem=1) # # Linear System # system = LinearSystem(u, A=A) # Set constraints system.add_dirichlet_constraint('left', 0) system.add_dirichlet_constraint('right', 1) system.solve_system(b) # Extract finite element solution ua = system.get_solution(as_function=True) system2 = LinearSystem(u, A=A, b=b) # Set constraints system2.add_dirichlet_constraint('left', 0) system2.add_dirichlet_constraint('right', 1) system2.solve_system() u2 = system2.get_solution(as_function=True) # Check that the solution is close self.assertTrue(np.allclose(ue.data()[:, 0], ua.data()[:, 0])) self.assertTrue(np.allclose(ue.data()[:, [0]], u2.data()))
def test08_1d_sampled_rhs(self): # # Mesh # mesh = Mesh1D(resolution=(1, )) mesh.mark_region('left', lambda x: np.abs(x) < 1e-9, on_boundary=True) mesh.mark_region('right', lambda x: np.abs(1 - x) < 1e-9, on_boundary=True) # # Elements # Q3 = QuadFE(1, 'Q3') dofhandler = DofHandler(mesh, Q3) dofhandler.distribute_dofs() # # Basis # v = Basis(dofhandler, 'u') vx = Basis(dofhandler, 'ux') # # Define sampled right hand side and exact solution # xv = dofhandler.get_dof_vertices() n_points = dofhandler.n_dofs() n_samples = 6 a = np.arange(n_samples) f = lambda x, a: a * x u = lambda x, a: a / 6 * (x - x**3) + x fdata = np.zeros((n_points, n_samples)) udata = np.zeros((n_points, n_samples)) for i in range(n_samples): fdata[:, i] = f(xv, a[i]).ravel() udata[:, i] = u(xv, a[i]).ravel() # Define sampled function fn = Nodal(data=fdata, basis=v) ue = Nodal(data=udata, basis=v) # # Forms # one = Constant(1) a = Form(Kernel(one), test=vx, trial=vx) L = Form(Kernel(fn), test=v) problem = [a, L] # # Assembler # assembler = Assembler(problem, mesh) assembler.assemble() A = assembler.get_matrix() b = assembler.get_vector() # # Linear System # system = LinearSystem(v, A=A, b=b) # Set constraints system.add_dirichlet_constraint('left', 0) system.add_dirichlet_constraint('right', 1) #system.set_constraint_relation() #system.incorporate_constraints() # Solve and resolve constraints system.solve_system() #system.resolve_constraints() # Extract finite element solution ua = system.get_solution(as_function=True) # Check that the solution is close print(ue.data()[:, [0]]) print(ua.data()) self.assertTrue(np.allclose(ue.data()[:, [0]], ua.data()))
def test05_2d_dirichlet(self): """ Two dimensional Dirichlet problem with hanging nodes """ # # Define mesh # mesh = QuadMesh(resolution=(1, 2)) mesh.cells.get_child(1).mark(1) mesh.cells.refine(refinement_flag=1) mesh.cells.refine() # # Mark left and right boundaries # bm_left = lambda x, dummy: np.abs(x) < 1e-9 bm_right = lambda x, dummy: np.abs(1 - x) < 1e-9 mesh.mark_region('left', bm_left, entity_type='half_edge') mesh.mark_region('right', bm_right, entity_type='half_edge') for etype in ['Q1', 'Q2', 'Q3']: # # Element # element = QuadFE(2, etype) dofhandler = DofHandler(mesh, element) dofhandler.distribute_dofs() # # Basis # u = Basis(dofhandler, 'u') ux = Basis(dofhandler, 'ux') uy = Basis(dofhandler, 'uy') # # Construct forms # ue = Nodal(f=lambda x: x[:, 0], basis=u) ax = Form(kernel=Kernel(Constant(1)), trial=ux, test=ux) ay = Form(kernel=Kernel(Constant(1)), trial=uy, test=uy) L = Form(kernel=Kernel(Constant(0)), test=u) problem = [ax, ay, L] # # Assemble # assembler = Assembler(problem, mesh) assembler.assemble() # # Get system matrices # A = assembler.get_matrix() b = assembler.get_vector() # # Linear System # system = LinearSystem(u, A=A, b=b) # # Constraints # # Add dirichlet conditions system.add_dirichlet_constraint('left', ue) system.add_dirichlet_constraint('right', ue) # # Solve # system.solve_system() #system.resolve_constraints() # # Check solution # ua = system.get_solution(as_function=True) self.assertTrue(np.allclose(ua.data(), ue.data()))
def test01_1d_dirichlet_linear(self): """ Solve one dimensional boundary value problem with dirichlet conditions on left and right """ # # Define mesh # mesh = Mesh1D(resolution=(10, )) for etype in ['Q1', 'Q2', 'Q3']: element = QuadFE(1, etype) dofhandler = DofHandler(mesh, element) dofhandler.distribute_dofs() phi = Basis(dofhandler) # # Exact solution # ue = Nodal(f=lambda x: x, basis=phi) # # Define Basis functions # u = Basis(dofhandler, 'u') ux = Basis(dofhandler, 'ux') # # Define bilinear form # one = Constant(1) zero = Constant(0) a = Form(kernel=Kernel(one), trial=ux, test=ux) L = Form(kernel=Kernel(zero), test=u) problem = [a, L] # # Assemble # assembler = Assembler(problem, mesh) assembler.assemble() # # Form linear system # A = assembler.get_matrix() b = assembler.get_vector() system = LinearSystem(u, A=A, b=b) # # Dirichlet conditions # # Boundary functions bm_left = lambda x: np.abs(x) < 1e-9 bm_rght = lambda x: np.abs(x - 1) < 1e-9 # Mark boundary regions mesh.mark_region('left', bm_left, on_boundary=True) mesh.mark_region('right', bm_rght, on_boundary=True) # Add Dirichlet constraints system.add_dirichlet_constraint('left', ue) system.add_dirichlet_constraint('right', ue) # # Solve system # #system.solve_system() system.solve_system() # # Get solution # #ua = system.get_solution(as_function=True) uaa = system.get_solution(as_function=True) #uaa = uaa.data().ravel() # Compare with exact solution #self.assertTrue(np.allclose(ua.data(), ue.data())) self.assertTrue(np.allclose(uaa.data(), ue.data()))
def test04_1d_periodic(self): # # Dirichlet Problem on a Periodic Mesh # # Define mesh, element mesh = Mesh1D(resolution=(100, ), periodic=True) element = QuadFE(1, 'Q3') dofhandler = DofHandler(mesh, element) dofhandler.distribute_dofs() # Basis functions u = Basis(dofhandler, 'u') ux = Basis(dofhandler, 'ux') # Exact solution ue = Nodal(f=lambda x: np.sin(2 * np.pi * x), basis=u) # # Mark dirichlet regions # bnd_left = lambda x: np.abs(x) < 1e-9 mesh.mark_region('left', bnd_left, entity_type='vertex') # # Set up forms # # Bilinear form a = Form(kernel=Kernel(Constant(1)), trial=ux, test=ux) # Linear form f = Explicit(lambda x: 4 * np.pi**2 * np.sin(2 * np.pi * x), dim=1) L = Form(kernel=Kernel(f), test=u) # # Assemble # problem = [a, L] assembler = Assembler(problem, mesh) assembler.assemble() A = assembler.get_matrix() b = assembler.get_vector() # # Linear System # system = LinearSystem(u, A=A, b=b) # Add dirichlet constraint system.add_dirichlet_constraint('left', 0, on_boundary=False) # Assemble constraints #system.set_constraint_relation() #system.incorporate_constraints() system.solve_system() #system.resolve_constraints() # Compare with interpolant of exact solution ua = system.get_solution(as_function=True) #plot = Plot(2) #plot.line(ua) #plot.line(ue) self.assertTrue(np.allclose(ua.data(), ue.data()))
def test_constructor(self): # ===================================================================== # Test 1D # ===================================================================== # # Kernel consists of a single explicit Function: # f1 = lambda x: x+2 f = Explicit(f1, dim=1) k = Kernel(f) x = np.linspace(0,1,100) n_points = len(x) # Check that it evaluates correctly. self.assertTrue(np.allclose(f1(x), k.eval(x).ravel())) # Check shape of kernel self.assertEqual(k.eval(x).shape, (n_points,1)) # # Kernel consists of a combination of two explicit functions # f1 = Explicit(lambda x: x+2, dim=1) f2 = Explicit(lambda x: x**2 + 1, dim=1) F = lambda f1, f2: f1**2 + f2 f_t = lambda x: (x+2)**2 + x**2 + 1 k = Kernel([f1,f2], F=F) # Check evaluation self.assertTrue(np.allclose(f_t(x), k.eval(x).ravel())) # Check shape self.assertEqual(k.eval(x).shape, (n_points,1)) # # Same thing as above, but with nodal functions # mesh = Mesh1D(resolution=(1,)) Q1 = QuadFE(1,'Q1') Q2 = QuadFE(1,'Q2') dQ1 = DofHandler(mesh,Q1) dQ2 = DofHandler(mesh,Q2) # Distribute dofs [dQ.distribute_dofs() for dQ in [dQ1,dQ2]] # Basis functions phi1 = Basis(dQ1,'u') phi2 = Basis(dQ2,'u') f1 = Nodal(lambda x: x+2, basis=phi1) f2 = Nodal(lambda x: x**2 + 1, basis=phi2) k = Kernel([f1,f2], F=F) # Check evaluation self.assertTrue(np.allclose(f_t(x), k.eval(x).ravel())) # # Replace f2 above with its derivative # k = Kernel([f1,f2], derivatives=['f', 'fx'], F=F) f_t = lambda x: (x+2)**2 + 2*x # Check derivative evaluation F = F(f1, df2_dx) self.assertTrue(np.allclose(f_t(x), k.eval(x).ravel())) # # Sampling # one = Constant(1) f1 = Explicit(lambda x: x**2 + 1, dim=1) # Sampled function a = np.linspace(0,1,11) n_samples = len(a) # Define Dofhandler dh = DofHandler(mesh, Q2) dh.distribute_dofs() dh.set_dof_vertices() xv = dh.get_dof_vertices() n_dofs = dh.n_dofs() phi = Basis(dh, 'u') # Evaluate parameterized function at mesh dof vertices f2_m = np.empty((n_dofs, n_samples)) for i in range(n_samples): f2_m[:,i] = xv.ravel() + a[i]*xv.ravel()**2 f2 = Nodal(data=f2_m, basis=phi) # Define kernel F = lambda f1, f2, one: f1 + f2 + one k = Kernel([f1,f2,one], F=F) # Evaluate on a fine mesh x = np.linspace(0,1,100) n_points = len(x) self.assertEqual(k.eval(x).shape, (n_points, n_samples)) for i in range(n_samples): # Check evaluation self.assertTrue(np.allclose(k.eval(x)[:,i], f1.eval(x)[:,i] + x + a[i]*x**2+ 1)) # # Sample multiple constant functions # f1 = Constant(data=a) f2 = Explicit(lambda x: 1 + x**2, dim=1) f3 = Nodal(data=f2_m[:,-1], basis=phi) F = lambda f1, f2, f3: f1 + f2 + f3 k = Kernel([f1,f2,f3], F=F) x = np.linspace(0,1,100) for i in range(n_samples): self.assertTrue(np.allclose(k.eval(x)[:,i], \ a[i] + f2.eval(x)[:,i] + f3.eval(x)[:,i])) # # Submeshes # mesh = Mesh1D(resolution=(1,)) mesh_labels = Tree(regular=False) mesh = Mesh1D(resolution=(1,)) Q1 = QuadFE(1,'Q1') Q2 = QuadFE(1,'Q2') dQ1 = DofHandler(mesh,Q1) dQ2 = DofHandler(mesh,Q2) # Distribute dofs [dQ.distribute_dofs() for dQ in [dQ1,dQ2]] # Basis p1 = Basis(dQ1) p2 = Basis(dQ2) f1 = Nodal(lambda x: x, basis=p1) f2 = Nodal(lambda x: -2+2*x**2, basis=p2) one = Constant(np.array([1,2])) F = lambda f1, f2, one: 2*f1**2 + f2 + one I = mesh.cells.get_child(0) kernel = Kernel([f1,f2, one], F=F) rule1D = GaussRule(5,shape='interval') x = I.reference_map(rule1D.nodes())
def test_subsample_deterministic(self): """ When evaluating a deterministic function while specifying a subsample, n_subsample copies of the function output should be returned. """ # # Deterministic functions # # Functions fns = { 1: { 1: lambda x: x[:, 0]**2, 2: lambda x, y: x[:, 0] + y[:, 0] }, 2: { 1: lambda x: x[:, 0]**2 + x[:, 1]**2, 2: lambda x, y: x[:, 0] * y[:, 0] + x[:, 1] * y[:, 1] } } # Singletons x = {1: {1: 2, 2: (3, 4)}, 2: {1: (1, 2), 2: ((1, 2), (3, 4))}} xv = { 1: { 1: [(2, ), (2, )], 2: ([(3, ), (3, )], [(4, ), (4, )]) }, 2: { 1: [(1, 2), (1, 2)], 2: ([(1, 2), (1, 2)], [(3, 4), (3, 4)]) } } vals = {1: {1: 4, 2: 7}, 2: {1: 5, 2: 11}} subsample = np.array([2, 3], dtype=np.int) for dim in [1, 2]: # # Iterate over dimension # # DofHandler if dim == 1: mesh = Mesh1D(box=[0, 5], resolution=(1, )) elif dim == 2: mesh = QuadMesh(box=[0, 5, 0, 5]) element = QuadFE(dim, 'Q2') dofhandler = DofHandler(mesh, element) dofhandler.distribute_dofs() basis = Basis(dofhandler) for n_variables in [1, 2]: # # Iterate over number of variables # # # Explicit # f = fns[dim][n_variables] # Explicit fe = Explicit(f, n_variables=n_variables, dim=dim, \ subsample=subsample) # Nodal fn = Nodal(f, n_variables=n_variables, basis=basis, dim=dim, \ dofhandler=dofhandler, subsample=subsample) # Constant fc = Constant(1, n_variables=n_variables, \ subsample=subsample) # Singleton input xn = x[dim][n_variables] # Explicit self.assertEqual(fe.eval(xn).shape[1], len(subsample)) self.assertEqual(fe.eval(xn)[0, 0], vals[dim][n_variables]) self.assertEqual(fe.eval(xn)[0, 1], vals[dim][n_variables]) # Nodal self.assertEqual(fn.eval(xn).shape[1], len(subsample)) self.assertAlmostEqual( fn.eval(xn)[0, 0], vals[dim][n_variables]) self.assertAlmostEqual( fn.eval(xn)[0, 1], vals[dim][n_variables]) # Constant self.assertEqual(fc.eval(xn).shape[1], len(subsample)) self.assertAlmostEqual(fc.eval(xn)[0, 0], 1) self.assertAlmostEqual(fc.eval(xn)[0, 1], 1) # Vector input xn = xv[dim][n_variables] n_points = 2 # Explicit self.assertEqual(fe.eval(xn).shape, (2, 2)) for i in range(fe.n_subsample()): for j in range(n_points): self.assertEqual( fe.eval(xn)[i][j], vals[dim][n_variables]) # Nodal self.assertEqual(fn.eval(xn).shape, (2, 2)) for i in range(fe.n_subsample()): for j in range(n_points): self.assertAlmostEqual( fn.eval(xn)[i][j], vals[dim][n_variables]) # Constant self.assertEqual(fc.eval(xn).shape, (2, 2)) for i in range(fe.n_subsample()): for j in range(n_points): self.assertEqual(fc.eval(xn)[i][j], 1)
# Parameters eps = 1e-3 a = 1 # Computational mesh mesh = Mesh1D(resolution=(200, )) mesh.mark_region('left', lambda x: np.abs(x) < 1e-9, entity_type='vertex') mesh.mark_region('right', lambda x: np.abs(x - 1) < 1e-9, entity_type='vertex') # Element element = QuadFE(1, 'Q1') dofhandler = DofHandler(mesh, element) dofhandler.distribute_dofs() # Kernels k_eps = SUPGKernel(Constant(-eps), Constant(a), eps) k_a = SUPGKernel(Constant(a), Constant(a), eps) # Forms u = Basis(dofhandler, 'u') ux = Basis(dofhandler, 'ux') uxx = Basis(dofhandler, 'uxx') problem = [ Form(eps, test=ux, trial=ux), Form(1, trial=ux, test=u), Form(0, test=u) ] problem = [ Form(eps, test=ux, trial=ux),
def test_ft(): plot = Plot() vb = Verbose() # ============================================================================= # Parameters # ============================================================================= # # Flow # # permeability field phi = Constant(1) # porosity D = Constant(0.0252) # dispersivity K = Constant(1) # permeability # ============================================================================= # Mesh and Elements # ============================================================================= # Mesh mesh = QuadMesh(resolution=(30, 30)) # Mark left and right regions mesh.mark_region('left', lambda x, y: np.abs(x) < 1e-9, entity_type='half_edge') mesh.mark_region('right', lambda x, y: np.abs(x - 1) < 1e-9, entity_type='half_edge') # Elements p_element = QuadFE(2, 'Q1') # element for pressure c_element = QuadFE(2, 'Q1') # element for concentration # Dofhandlers p_dofhandler = DofHandler(mesh, p_element) c_dofhandler = DofHandler(mesh, c_element) p_dofhandler.distribute_dofs() c_dofhandler.distribute_dofs() # Basis functions p_ux = Basis(p_dofhandler, 'ux') p_uy = Basis(p_dofhandler, 'uy') p_u = Basis(p_dofhandler, 'u') p_inflow = lambda x, y: np.ones(shape=x.shape) p_outflow = lambda x, y: np.zeros(shape=x.shape) c_inflow = lambda x, y: np.zeros(shape=x.shape) # ============================================================================= # Solve the steady state flow equations # ============================================================================= vb.comment('Solving flow equations') # Define problem flow_problem = [ Form(1, test=p_ux, trial=p_ux), Form(1, test=p_uy, trial=p_uy), Form(0, test=p_u) ] # Assemble vb.tic('assembly') assembler = Assembler(flow_problem) assembler.add_dirichlet('left', 1) assembler.add_dirichlet('right', 0) assembler.assemble() vb.toc() # Solve linear system vb.tic('solve') A = assembler.get_matrix().tocsr() b = assembler.get_vector() x0 = assembler.assembled_bnd() # Interior nodes pa = np.zeros((p_u.n_dofs(), 1)) int_dofs = assembler.get_dofs('interior') pa[int_dofs, 0] = spla.spsolve(A, b - x0) # Resolve Dirichlet conditions dir_dofs, dir_vals = assembler.get_dirichlet(asdict=False) pa[dir_dofs] = dir_vals vb.toc() # Pressure function pfn = Nodal(data=pa, basis=p_u) px = pfn.differentiate((1, 0)) py = pfn.differentiate((1, 1)) #plot.contour(px) #plt.show() # ============================================================================= # Transport Equations # ============================================================================= # Specify initial condition c0 = Constant(1) dt = 1e-1 T = 6 N = int(np.ceil(T / dt)) c = Basis(c_dofhandler, 'c') cx = Basis(c_dofhandler, 'cx') cy = Basis(c_dofhandler, 'cy') print('assembling transport equations') k_phi = Kernel(f=phi) k_advx = Kernel(f=[K, px], F=lambda K, px: -K * px) k_advy = Kernel(f=[K, py], F=lambda K, py: -K * py) tht = 1 m = [Form(kernel=k_phi, test=c, trial=c)] s = [ Form(kernel=k_advx, test=c, trial=cx), Form(kernel=k_advy, test=c, trial=cy), Form(kernel=Kernel(D), test=cx, trial=cx), Form(kernel=Kernel(D), test=cy, trial=cy) ] problems = [m, s] assembler = Assembler(problems) assembler.add_dirichlet('left', 0, i_problem=0) assembler.add_dirichlet('left', 0, i_problem=1) assembler.assemble() x0 = assembler.assembled_bnd() # Interior nodes int_dofs = assembler.get_dofs('interior') # Dirichlet conditions dir_dofs, dir_vals = assembler.get_dirichlet(asdict=False) # System matrices M = assembler.get_matrix(i_problem=0) S = assembler.get_matrix(i_problem=1) # Initialize c0 and cp c0 = np.ones((c.n_dofs(), 1)) cp = np.zeros((c.n_dofs(), 1)) c_fn = Nodal(data=c0, basis=c) # # Compute solution # print('time stepping') for i in range(N): # Build system A = M + tht * dt * S b = M.dot(c0[int_dofs]) - (1 - tht) * dt * S.dot(c0[int_dofs]) # Solve linear system cp[int_dofs, 0] = spla.spsolve(A, b) # Add Dirichlet conditions cp[dir_dofs] = dir_vals # Record current iterate c_fn.add_samples(data=cp) # Update c0 c0 = cp.copy() #plot.contour(c_fn, n_sample=i) # # Quantity of interest # def F(c, px, py, entity=None): """ Compute c(x,y,t)*(grad p * n) """ n = entity.unit_normal() return c * (px * n[0] + py * n[1]) px.set_subsample(i=np.arange(41)) py.set_subsample(i=np.arange(41)) #kernel = Kernel(f=[c_fn,px,py], F=F) kernel = Kernel(c_fn) #print(kernel.n_subsample()) form = Form(kernel, flag='right', dmu='ds') assembler = Assembler(form, mesh=mesh) assembler.assemble() QQ = assembler.assembled_forms()[0].aggregate_data()['array'] Q = np.array([assembler.get_scalar(i_sample=i) for i in np.arange(N + 1)]) t = np.linspace(0, T, N + 1) plt.plot(t, Q) plt.show() print(Q)
V1 = DofHandler(mesh, E1) V1.distribute_dofs() v = Basis(V1, 'v') v_x = Basis(V1, 'vx') v_y = Basis(V1, 'vy') V1.distribute_dofs() print(V1.n_dofs()) # Time discretization t0, t1, dt = 0, 1, 0.025 nt = np.int((t1 - t0) / dt) # Initial condition u0 = Constant(0) # Left Dirichlet condition def u_left(x): n_points = x.shape[0] u = np.zeros((n_points, 1)) left_strip = (x[:, 0] >= 4) * (x[:, 0] <= 6) * (abs(x[:, 1]) < 1e-9) u[left_strip, 0] = 1 return u u_left = Explicit(f=u_left, mesh=mesh) # Define problems Dx = 1
import matplotlib.pyplot as plt from matplotlib import animation import time from diagnostics import Verbose # ============================================================================= # Parameters # ============================================================================= # # Flow # comment = Verbose() # permeability field phi = Constant(1) # porosity D = Constant(0.0252) # dispersivity K = Constant(1) # permeability # ============================================================================= # Mesh and Elements # ============================================================================= # Mesh comment.tic('initializing mesh') mesh = QuadMesh(resolution=(100, 100)) comment.toc() comment.tic('iterating over mesh cells') for cell in mesh.cells.get_leaves(): pass comment.toc()
def test03_solve_2d(self): """ Test problem with Neumann conditions """ # # Define Mesh # mesh = QuadMesh(resolution=(2, 1)) mesh.cells.get_child(1).mark(1) mesh.cells.refine(refinement_flag=1) # Mark left and right boundaries bm_left = lambda x, dummy: np.abs(x) < 1e-9 bm_right = lambda x, dummy: np.abs(1 - x) < 1e-9 mesh.mark_region('left', bm_left, entity_type='half_edge') mesh.mark_region('right', bm_right, entity_type='half_edge') for etype in ['Q1', 'Q2', 'Q3']: # # Define element and basis type # element = QuadFE(2, etype) dofhandler = DofHandler(mesh, element) dofhandler.distribute_dofs() u = Basis(dofhandler, 'u') ux = Basis(dofhandler, 'ux') uy = Basis(dofhandler, 'uy') # # Exact solution # ue = Nodal(f=lambda x: x[:, 0], basis=u) # # Set up forms # one = Constant(1) ax = Form(kernel=Kernel(one), trial=ux, test=ux) ay = Form(kernel=Kernel(one), trial=uy, test=uy) L = Form(kernel=Kernel(Constant(0)), test=u) Ln = Form(kernel=Kernel(one), test=u, dmu='ds', flag='right') problem = [ax, ay, L, Ln] assembler = Assembler(problem, mesh) assembler.add_dirichlet('left', dir_fn=0) assembler.add_hanging_nodes() assembler.assemble() # # Automatic solve # ya = assembler.solve() self.assertTrue(np.allclose(ue.data()[:, 0], ya)) # # Explicit solve # # System Matrices A = assembler.get_matrix().toarray() b = assembler.get_vector() x0 = assembler.assembled_bnd() # Solve linear system xa = np.zeros(u.n_dofs()) int_dofs = assembler.get_dofs('interior') xa[int_dofs] = np.linalg.solve(A, b - x0) # Resolve Dirichlet conditions dir_dofs, dir_vals = assembler.get_dirichlet(asdict=False) xa[dir_dofs] = dir_vals[:, 0] # Resolve hanging nodes C = assembler.hanging_node_matrix() xa += C.dot(xa) self.assertTrue(np.allclose(ue.data()[:, 0], xa))