Ejemplo n.º 1
0
def parallel_onecommitted(number_opinion, N, interaction_number, data_point,
                          seed_list, pA):
    """TODO: Docstring for parallel_actual_simlation.

    :arg1: TODO
    :returns: TODO

    """
    nA = int(N * pA)
    xB = int(N - nA)
    state_list = all_state(number_opinion)
    state_single = state_list[0:number_opinion]
    initial_state = ['a'] * nA + ['B'] * xB

    des = f'../data/actual_simulation/onecommitted/number_opinion={number_opinion}/N={N}_interaction_number={interaction_number}_pA={pA}/'
    if not os.path.exists(des):
        os.makedirs(des)

    p = mp.Pool(cpu_number)
    p.starmap_async(actual_simulation,
                    [(N, interaction_number, data_point, initial_state,
                      state_single, seed, des) for seed in seed_list]).get()
    p.close()
    p.join()
    return None
Ejemplo n.º 2
0
def approximation_to_original(number_opinion, x):
    """TODO: Docstring for function.

    :number_opinion: TODO
    :x: TODO
    :returns: TODO

    """
    y = np.zeros(2**number_opinion - 1 + number_opinion)
    state_list = all_state(number_opinion)
    state_list_approximation = all_state_approximation_three(number_opinion)
    state_convert_index = []
    convert = []
    for i in state_list:
        new = ''
        for j in i:
            if j == 'A' or j == 'B' or j == 'a' or j == 'b':
                new += j
            elif j.islower():
                new += 'c'
            else:
                new += 'C'
        convert.append(new)
        if new == 'b':
            state_convert_index.append(-1)
        else:
            state_convert_index.append(state_list_approximation.index(new))
    for i in range(np.size(y)):
        if state_convert_index[i] == -1:
            y[i] = 0
        else:
            y[i] = x[state_convert_index[i]] / np.sum(
                state_convert_index[i] == np.array(state_convert_index))
    return y
Ejemplo n.º 3
0
def parallel_actual_simulation(number_opinion, N, interaction_number,
                               data_point, seed_list, pA, p):
    """TODO: Docstring for parallel_actual_simlation.

    :arg1: TODO
    :returns: TODO

    """
    nA = int(N * pA)
    nC = int(N * p)
    nB = int(N - nA - nC * (number_opinion - 2))
    state_list = all_state(number_opinion)
    state_single = state_list[0:number_opinion]
    state_committed = state_list[number_opinion:2 * number_opinion]
    state_Atilde = state_committed[2:]
    initial_state = ['a'] * nA + ['B'] * nB + functools.reduce(
        operator.iconcat, [[i] * nC for i in state_Atilde], [])
    """
    nA = int(N * pA)
    nB = int(N * p)
    xB = int(N - nA - nB)
    xA = int(N/2)
    xB = int(N/2)
    state_list = all_state(number_opinion)
    state_single = state_list[0: number_opinion]
    #initial_state = ['a'] * nA + ['b'] * nB  + ['B'] * xB 
    initial_state = ['a'] * nA + ['b'] * nB  + ['A'] * xA + ['B'] * xB 
    """

    des = f'../data/actual_simulation/number_opinion={number_opinion}/N={N}_interaction_number={interaction_number}_pA={pA}_p={p}/'
    if not os.path.exists(des):
        os.makedirs(des)

    p = mp.Pool(cpu_number)
    p.starmap_async(actual_simulation,
                    [(N, interaction_number, data_point, initial_state,
                      state_single, seed, des) for seed in seed_list]).get()
    p.close()
    p.join()
    return None
Ejemplo n.º 4
0
def parallel_actual_simulation_multi_opinion_switch(number_opinion, N,
                                                    interaction_number,
                                                    data_point, seed_list, pA,
                                                    p0, switch_direction,
                                                    approx_integer):
    """TODO: Docstring for parallel_actual_simlation.

    :arg1: TODO
    :returns: TODO

    """
    """
    committed_fraction = np.hstack(( np.array([pA, 0]), np.ones(number_opinion - 2) * p0 ))
    xA_dominate = np.hstack(( np.array([1-sum(committed_fraction)]), np.zeros(number_opinion - 1) )) 
    xB_dominate = np.hstack(( np.array([0, 1-sum(committed_fraction)]), np.zeros(number_opinion - 2) )) 
    xC_dominate = np.hstack(( np.array([0, 0, 1-sum(committed_fraction)]), np.zeros(number_opinion - 3) )) 
    result_A_dominate = mft_evolution(number_opinion, committed_fraction, xA_dominate)[-1]
    result_B_dominate = mft_evolution(number_opinion, committed_fraction, xB_dominate)[-1]
    result_C_dominate = mft_evolution(number_opinion, committed_fraction, xC_dominate)[-1]
    """
    committed_fraction = np.array([pA, p0 * (number_opinion - 2)])
    xA_dominate = np.array([1 - sum(committed_fraction), 0, 0])
    xB_dominate = np.array([0, 1 - sum(committed_fraction), 0])
    xC_dominate = np.array([0, 0, 1 - sum(committed_fraction)])
    result_A_dominate = mft_evolution_approximation(number_opinion,
                                                    committed_fraction,
                                                    xA_dominate)[-1]
    result_B_dominate = mft_evolution_approximation(number_opinion,
                                                    committed_fraction,
                                                    xB_dominate)[-1]
    result_C_dominate = mft_evolution_approximation(number_opinion,
                                                    committed_fraction,
                                                    xC_dominate)[-1]
    if np.sum(np.abs(result_A_dominate - result_B_dominate)) < 1e-5:
        result_B_dominate = np.hstack(
            (np.array([0, 1 - sum(committed_fraction)]),
             np.zeros(len(result_B_dominate) - 2)))
    if switch_direction == 'A-B':
        switch_threshold = result_B_dominate[1]
        x_simulation = result_A_dominate
    elif switch_direction == 'B-A':
        switch_threshold = result_A_dominate[0]
        x_simulation = result_B_dominate
    elif switch_direction == 'B-C':
        switch_threshold = result_C_dominate[2]
        x_simulation = result_B_dominate
    x_simulation = approximation_to_original(number_opinion, x_simulation)

    n_all_opinions = np.round(x_simulation * N, 10)
    if approx_integer == 'round':
        n_all_integer = np.array(np.round(n_all_opinions), dtype=int)
    elif approx_integer == 'floor':
        n_all_integer = np.array(n_all_opinions, dtype=int)
    elif approx_integer == 'ceil':
        n_all_integer = np.array(np.ceil(n_all_opinions), dtype=int)

    if sum(n_all_integer[:-1]) <= N:
        n_all_integer[-1] = N - sum(n_all_integer[:-1])
    else:
        index = np.where(np.cumsum(n_all_integer) > N)[0]
        n_all_integer[index] = N - sum(n_all_integer[:index - 1])
        n_all_integer[index + 1:] = 0

    state_list = all_state(number_opinion)
    initial_state = []
    for i, j in zip(state_list, n_all_integer):
        initial_state += [i] * j

    state_single = state_list[0:number_opinion]
    des = f'../data/actual_simulation/number_opinion={number_opinion}/approx_integer=' + approx_integer + f'/N={N}_pA={pA}_p0={p0}_switch_direction=' + switch_direction + '/'
    if not os.path.exists(des):
        os.makedirs(des)
    p = mp.Pool(cpu_number)
    p.starmap_async(
        simulation_onetime,
        [(N, interaction_number, data_point, initial_state, state_single, seed,
          des, switch_direction, switch_threshold)
         for seed in seed_list]).get()
    p.close()
    p.join()
    return None
Ejemplo n.º 5
0
def parallel_actual_simulation_two_opinion_switch(number_opinion, N,
                                                  interaction_number,
                                                  data_point, seed_list, pA,
                                                  pB, switch_direction,
                                                  approx_integer):
    """TODO: Docstring for parallel_actual_simlation.

    :arg1: TODO
    :returns: TODO

    """
    committed_fraction = np.array([pA, pB])
    xA_dominate = np.array([1 - sum(committed_fraction), 0])
    xB_dominate = np.array([0, 1 - sum(committed_fraction)])
    result_A_dominate = mft_evolution(number_opinion, committed_fraction,
                                      xA_dominate)
    result_B_dominate = mft_evolution(number_opinion, committed_fraction,
                                      xB_dominate)
    xA_A_dominate, xB_A_dominate = result_A_dominate[-1, :2]
    xA_B_dominate, xB_B_dominate = result_B_dominate[-1, :2]
    if abs(xA_A_dominate - xA_B_dominate) < 1e-5:
        xA_B_dominate = 0
        xB_B_dominate = 1 - sum(committed_fraction)

    if switch_direction == 'A-B':
        switch_threshold = xB_B_dominate
        xA_simulation = xA_A_dominate
        xB_simulation = xB_A_dominate
    elif switch_direction == 'B-A':
        switch_threshold = xA_A_dominate
        xA_simulation = xA_B_dominate
        xB_simulation = xB_B_dominate

    nA_com = round(N * pA, 10)
    nB_com = round(N * pB, 10)
    nA_uncom = round(N * xA_simulation, 10)
    nB_uncom = round(N * xB_simulation, 10)

    if approx_integer == 'round':
        nA_com = int(round(nA_com))
        nB_com = int(round(nB_com))
        nA_uncom = int(round(nA_uncom))
        nB_uncom = int(round(nB_uncom))
    elif approx_integer == 'floor':
        nA_com = int(nA_com)
        nB_com = int(nB_com)
        nA_uncom = int(nA_uncom)
        nB_uncom = int(nB_uncom)
    elif approx_integer == 'ceil':
        nA_com = int(np.ceil(nA_com))
        nB_com = int(np.ceil(nB_com))
        nA_uncom = int(np.ceil(nA_uncom))
        nB_uncom = int(np.ceil(nB_uncom))

    nAB_uncom = N - nA_com - nB_com - nA_uncom - nB_uncom
    state_list = all_state(number_opinion)
    state_single = state_list[0:number_opinion]
    initial_state = ['a'] * nA_com + ['b'] * nB_com + ['A'] * nA_uncom + [
        'B'
    ] * nB_uncom + ['AB'] * nAB_uncom

    des = f'../data/actual_simulation/number_opinion={number_opinion}/approx_integer=' + approx_integer + f'/N={N}_pA={pA}_pB={pB}_switch_direction=' + switch_direction + '/'
    if not os.path.exists(des):
        os.makedirs(des)
    p = mp.Pool(cpu_number)
    p.starmap_async(
        simulation_onetime,
        [(N, interaction_number, data_point, initial_state, state_single, seed,
          des, switch_direction, switch_threshold)
         for seed in seed_list]).get()
    p.close()
    p.join()
    return None