Ejemplo n.º 1
0
    def lane_detection(self, image_bgr):
        # Convert to HSV
        image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)

        # Mask
        global mask_lower_threshold, mask_upper_threshold
        mask = cv2.inRange(image_hsv, mask_lower_threshold,
                           mask_upper_threshold)

        # Publish mask image
        if self.mask_pub.get_num_connections() > 0:
            self.mask_pub.publish(
                self.bridge.cv2_to_imgmsg(mask, encoding='passthrough'))

        # Canny edge detection
        edges = cv2.Canny(mask, 200, 400)

        # Clear the top half of the edges image
        edges[0:int(float(edges.shape[0]) / 2.), :] = 0.

        # Publish edges image
        if self.edges_image_pub.get_num_connections() > 0:
            self.edges_image_pub.publish(
                self.bridge.cv2_to_imgmsg(edges, encoding='passthrough'))

        # Detect line segments
        line_segments_tmp = cv2.HoughLinesP(edges, 1, np.pi / 180., 10, None,
                                            8, 4)

        if line_segments_tmp is None:
            print('')
            return [None, None]

        # Remove extra array layer from line_segments_tmp
        line_segments = []

        for line_segment in line_segments_tmp:
            line_segments.append(line_segment[0])

        # Publish line segments image
        if self.line_segments_image_pub.get_num_connections() > 0:
            line_segments_image = plot_line_segments(image_bgr, line_segments)
            self.line_segments_image_pub.publish(
                self.bridge.cv2_to_imgmsg(line_segments_image,
                                          encoding='bgr8'))

        # Combine line segments
        [left_lane,
         right_lane] = functions.average_slope_intercept(line_segments)

        if self.lanes_image_pub.get_num_connections() > 0:
            lanes_image = plot_lanes(image_bgr, left_lane, right_lane)
            self.lanes_image_pub.publish(
                self.bridge.cv2_to_imgmsg(lanes_image, encoding='bgr8'))

        return [left_lane, right_lane]
Ejemplo n.º 2
0
		"""
        canny_frm = functions.canny(frame)

        # 4. cropped frame/image with the mask
        cropped_frm = functions.region_of_interest(canny_frm)
        # 5. Apply hough transform (r , teta) : shall be small for better precision
        #  HoughLinesP parameters :  r = 2 pixels , teta=1 degree, threshold = 100, empty array, ...
        lines = cv2.HoughLinesP(cropped_frm,
                                2,
                                np.pi / 180,
                                100,
                                np.array([]),
                                minLineLength=40,
                                maxLineGap=5)

        # 6. optimizing
        # average multiples slope in the lines to a single slope line
        averaged_lines = functions.average_slope_intercept(frame, lines)
        # display line frame/image
        line_frm = functions.display_lines(frame, averaged_lines)

        # merged the gradient frame/image into the colored frame/image
        combo_frm = cv2.addWeighted(frame, 0.8, line_frm, 1, 1)
        # Creates a window to display the line frame/image
        cv2.imshow('result', combo_frm)
        # Display the frame/image during 1msn and abort the system if the a keyboard is pressed
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()