Ejemplo n.º 1
0
    types = np.array(types)
    np.random.shuffle(types)

    atom_setting = ''
    for i, j in zip(atoms, types):
        atom_setting += i + j + '\n'

    m = values['slope'].values[0]
    b = values['intercept'].values[0]

    length = m * start_temp + b

    run = join(*[save, group, start_temp_str])

    # Write run
    functions.create_dir(run)

    # Write input files for cubic
    contents = incar_contents.replace('$side$', str(length))
    contents = contents.replace('$lattice$', str(length / l))
    contents = contents.replace('$time_step$', str(time_step))
    contents = contents.replace('$seed$', str(seed))
    contents = contents.replace('$temp$', str(start_temp))
    contents = contents.replace('$steps$', str(hold_steps))
    contents = contents.replace('$l$', str(l))
    contents = contents.replace('$atom_setting$', atom_setting)

    remove = ''
    l_cubed = l**3
    if atom_count < l_cubed:
Ejemplo n.º 2
0
density = 100000  # The number of points to use in fit
data_save_dir = '../data'  # The data save folder
data_save_name = 'data.csv'  # The data save name
save_plots = '../figures'  # The figures save folder
order = 3  # The order of the spline fit

# Load Data
df = pd.read_csv(df)
df = df.dropna()  # Drop bad jobs
df = df.sort_values(by=['volume', 'start_temperature', 'end_temperature'])

# Group data
groups = df.groupby(['composition', 'start_temperature', 'end_temperature'])

# Create figures directory
functions.create_dir(save_plots)

compositions = []
temperatures = []
lengths = []
length_errors = []
pressure_errors = []

for group, values in groups:
    name = str(group)
    print('Grouped by: '+name)

    y = values['pressure'].values
    x = values['volume'].values
    x **= 1/3
Ejemplo n.º 3
0
hold_steps = 3000  # The number of hold steps
dT = sys.argv[1]  # Change in temperature
min_temp = sys.argv[2]  # The minimum allowable temperature hold

fits = pd.read_csv(fits)  # Load TV curves

cwd = os.getcwd()
temp = float(os.path.basename(cwd)) - dT

if temp >= min_temp:

    # Random integer
    seed = np.random.randint(100000, 999999)

    dir_name = os.path.join('../', str(temp))
    functions.create_dir(dir_name)

    # Read composition from name
    composition = incar_name.split('/')[-1].split('_')[0]

    fit = fits.loc[fits['composition'] == composition].values[0]
    m = fit[1]
    b = fit[2]

    # Change volume
    length = m * temp + b

    # Open and read template
    incar = open(incar_name)
    incar_contents = incar.read()
    incar.close()
Ejemplo n.º 4
0
import functions
import os
import platform
import victory
import use_functions

while True:
    functions.print_menu()  # выводим список меню

    choice = input('Выберете номер пункта меню: ')
    if choice == '1':
        functions.create_dir()  # создаем папку

    elif choice == '2':
        functions.delete_dir()  # удаляем папку

    elif choice == '3':
        functions.copy_dir()  # копируем папку

    elif choice == '4':
        print('Содержимое рабочей директории:')
        print(os.listdir('.'))  # папки и файлы рабочей дирректории

    elif choice == '5':
        functions.save_dir()  # сохраняем файлы и папки рабочей дирректории

    elif choice == '6':
        functions.list_file()  # файлы рабочей дирректории

    elif choice == '7':
        functions.list_folders()  # папки рабочей дирректории
Ejemplo n.º 5
0
                  'max subsidy': SUB_MAX,
                  'reward_function': reward_fun,
                  'length_ep': LENGTH_EPISODE,
                  'n_ep': NUM_EPISODES,
                  'lr': LEARNING_RATE,
                  'batch_size': BATCH_SIZE,
                  'gamma': GAMMA,
                  'save_interval': SAVE_INTERVAL}


        # ######################################################################################################################
        # ######################################################################################################################
        # ######################################################################################################################

        # create saving directory and save config
        SAVE_DIR = create_dir(DEBUG, LEARNING_RATE, DELTA_RESEARCH, BETA, DELTA_RESOURCE)
        writer = SummaryWriter(SAVE_DIR)
        torch.save(CONFIG, (SAVE_DIR / 'config'), _use_new_zipfile_serialization=False)
        with open((SAVE_DIR / 'config.txt'), 'w') as file:
            for key in CONFIG.keys():
                file.write(str(key) + ': ' + str(CONFIG[key]) + '\n')

        # create environment
        env = FSCNetworkEnvAlternative(init_sup=INIT_SUPPORT, init_res=INIT_RESOURCE, ep_len=LENGTH_EPISODE, lambda_=LAMBDA,
                                       sub_max=SUB_MAX, delta_res=DELTA_RESOURCE, beta=BETA, delta_search=DELTA_RESEARCH,
                                       n_state_space=N_STATE_SPACE, base_impacts=BASE_IMPACTS, agg_weeks=4, save_calc=False)

        print('--------------------------------    ' + str(device) + '    --------------------------------')
        if device == 'cuda':
            print(torch.cuda.get_device_name(0))
Ejemplo n.º 6
0
# dir:
opt_str = 'adam_lr%s_sgd_lr%s_epoch%d_de%d_batch%d' % (
    args.lr_w, args.lr_gamma, args.max_epoch, args.decay_epoch,
    args.batch_size)
loss_str = 'train_D_orig_beta%s_rho%s_lc%s_%s' % (args.beta, args.rho, args.lc,
                                                  args.lc_layer)
args.output_dir = os.path.join('output', '%s_%s' % (loss_str, opt_str))

args.pth_dir = os.path.join(args.output_dir, 'pth')
args.img_dir = os.path.join(args.output_dir, 'img')
args.gamma_dir = os.path.join(args.output_dir, 'gamma')
args.fid_buffer_dir = os.path.join(args.output_dir, 'fid_buffer')
args.do_IS = False
args.do_FID = False
create_dir(args.pth_dir), create_dir(args.img_dir), create_dir(
    args.gamma_dir), create_dir(args.fid_buffer_dir)

# gpu:
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True

# set tf env
if args.do_IS:
    _init_inception()
if args.do_FID:
    inception_path = check_or_download_inception(None)
    create_inception_graph(inception_path)
Ejemplo n.º 7
0
for group, values in groups:

    print(group)

    x = 1/values['end_temperature']
    y = df['self_diffusion']

    f = interp1d(x, y, kind=order)  # Linear interpolation

    xfit = np.linspace(min(x), max(x), density)
    yfit = f(xfit)

    if save_plots:

        # Create saving directory for figures
        functions.create_dir(save_plots)

        save_name = join(save_plots, str(group))

        # Plot glass transition curve
        fig, ax = pl.subplots()

        ax.plot(
                x,
                y,
                linestyle='none',
                marker='.',
                label='Data',
                color='b'
                )
        ax.plot(
Ejemplo n.º 8
0
    parser.add_argument('--eval_batch_size', type=int, default=100)
    parser.add_argument('--num_eval_imgs', type=int, default=50000)

    parser.add_argument('--random_seed', type=int, default=12345)
    parser.add_argument('--load-epoch', type=int, default=100)
    parser.add_argument('--dir', type=str)
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu

    ###
    # for pruning models:
    exp_str = args.dir
    test_result_dir = os.path.join('output', exp_str, 'Samples')
    create_dir(test_result_dir)
    args.fid_buffer_dir = os.path.join('output', exp_str, 'fid_buffer')
    args.load_path = os.path.join('output', exp_str, 'pth',
                                  'epoch%d.pth' % args.load_epoch)

    # # for original model:
    # exp_str = 'sngan_cifar10_2019_10_24_12_19_30'
    # test_result_dir = os.path.join('logs', exp_str, 'Samples')
    # create_dir(test_result_dir)
    # args.fid_buffer_dir = os.path.join('logs', exp_str, 'fid_buffer')
    # args.load_path = os.path.join('logs', exp_str, 'Model', 'checkpoint_best.pth')
    ###

    args.do_IS = True
    args.do_FID = True