Ejemplo n.º 1
0
def sklearnNaiveBayes(test, train, structFile):
    model=GaussianNB()
    le=preprocessing.LabelEncoder()

    target_train=train['class']
    inputs_train=train.drop('class',axis='columns')

    target_test=test['class']
    inputs_test=test.drop('class',axis='columns')

    inputs_train=fit_transforms(inputs_train)
    model.fit(inputs_train,target_train)
    # save model to file
    filename = 'NaiveBayesSKlearn_model.sav'
    joblib.dump(model, filename)

    inputs_test=fit_transforms(inputs_test)
    print("sklearnNaiveBayes accuracy:",model.score(inputs_test,target_test),"%")
Ejemplo n.º 2
0
def TestTrainFitPlot(train, test):
    # Setup arrays to store train and test accuracies
    # Split into training and test set
    target_train = train['class']
    inputs_train = train.drop('class', axis='columns')
    target_test = test['class']
    inputs_test = test.drop('class', axis='columns')
    inputs_train = fit_transforms(inputs_train)
    inputs_test = fit_transforms(inputs_test)
    knn = KNeighborsClassifier()
    knn.fit(inputs_train, target_train)
    # save model to file
    filename = 'KNN_model.sav'
    joblib.dump(knn, open(filename, 'wb'))
    # Check Accuracy Score
    print('KNN Accuracy: {}'.format(
        round(knn.score(inputs_test, target_test), 3)))
    # Enum Loop, accuracy results using range on 'n' values for KNN Classifier
    ''' 
Ejemplo n.º 3
0
def ID3SKlearn_algorithm(test,train,structFile):

    train=fit_transforms(train)
    train_target= train['class']
    train_feature=train.drop('class', axis='columns')

    test=fit_transforms(test)
    test_target= test['class']
    test_feature=test.drop('class', axis='columns')

    tree=DecisionTreeClassifier(criterion='entropy',max_depth=100).fit(train_feature,train_target)

    # save model to file
    filename = 'ID3SKlearn_model.sav'
    joblib.dump(tree, filename)

    prediction = tree.predict(test_feature)

    print("ID3SKlearn_algorithm accuracy is: ",tree.score(test_feature,test_target)*100,"%")
Ejemplo n.º 4
0
def KNNClassifier(test, train, structFile):
    encode = fit_transforms(train)
    encode_ = fit_transforms(test)
    x = feature("class", encode)
    y = feature("class", encode_)
    TestTrainFitPlot(train, test)