def main(): total = 0 data = getdata("input.txt") for entry in data: fuel = calcfuel(entry) total_for_entry = fuel while calcfuel(fuel) > 0: fuel = calcfuel(fuel) total_for_entry += fuel total += total_for_entry return total
def dashboard(): try: p = [] p = getdata() #print(p) values = map(int, p) appl = appplication() infrs = infrastructure() sys = sysbuild() db = Database() NSA = NetSecArch() FN = FND() CodeR = CR() SecCo = SC() print(appl) print(infrs) legend = 'Vulnerability frequency By type' legend2 = 'Web application vulnerabilities' labels = ["Critical", "High", "Medium", "Low", "Informational"] labels2 = ["Critical", "High", "Medium", "Low", "Informational"] return render_template('template.html', value1=p[0], value2=p[1], value3=p[2], value4=p[3], value5=p[4], values=values, labels=labels, legend=legend, labels2=labels2, appl=appl, infr=infrs, legend2=legend2) except Exception as e: print(e)
def acquireData(self): self.data = functions.getdata(self.spectrometer) return self.data
def main(): lines = getdata() intersections = getintersections(lines[0], lines[1]) closest = getclosestintersection(intersections)
header_data = infile.readline() finally: infile.close() header_data = header_data.split() header_data = [item.lower() for item in header_data] # get data from file # important to notice: pandas.read_csv are faster than numpy.genfromtxt data = pd.read_csv(file, delimiter='\t', header=1, names=header_data, engine='c', decimal=',') # data = data[data != 0] # initialize Checkbarlist for dialog later Checkbarlist = ['save plots?'] [puv, puv_time, pv, time, filt_dat, current, r_spec] = getdata(data) # plt.plot(r_spec) # plt.show() # write data in seperate vatiables for better readability for i in range(0, len(header_data)): if header_data[i] == 'time': time = np.array(data['time'], dtype=pd.Series) elif header_data[i] == 'current': # current = np.array(data['current'], dtype=pd.Series) Checkbarlist.append('current') elif header_data[i] == 'r_spec': # r_spec = np.array(data['r_spec'], dtype=pd.Series) Checkbarlist.append('r_spec') elif header_data[i] == 'puv': # puv = np.array(data['puv'], dtype=pd.Series)
total = dist() totaltime = timerun() adjusted = adjust(totaltime) finalpace = calcpace(adjusted, total) convertedpace = converttime(finalpace) impress = toprint(convertedpace) elif option == '2': total = dist() totaltime = timerun() adjusted = adjust(totaltime) calctemp = predictrun(adjusted, total) convertedtemprun = converttime(calctemp) impress = toprint(convertedtemprun) elif option == '3': createtable() thedate = date() total = dist() totaltime = timerun() adjusted = adjust(totaltime) finalpace = calcpace(adjusted, total) convertedpace = converttime(finalpace) obs = observations() escrever = setdata(thedate, total, totaltime, convertedpace, obs) elif option == '4': getdata() deletedata() elif option == '5': getdata() else: invalidoption_text()
else: sys.exit('It is recommened to use Linux! (or Windows if you have to)') # check if user aborted file selection if file == '': sys.exit('no file to load data from!') # datalength = list(range(100)) # get data frprofile nuom file # important to notice: pandas.read_csv are faster than numpy.genfromtxt data = pd.read_csv(file, delimiter='\t', header=0, engine='c', decimal=',') # use the rawdata on function getdata to split profiles and smooth it [raw_dat, raw_time, raw_pv, raw_pv_time, filt_dat, current_dat, r_spec_dat] = getdata(data) # save raw_d and raw_pv for further computations np.save('filt_dat', filt_dat) np.save('raw_dat', raw_dat) np.save('raw_pv', raw_pv) np.save('raw_time', raw_time) np.save('raw_pv_time', raw_pv_time) # exit() # from compute_delta_cp_and_e_ht_as_function import delta_cp_and_e_ht # from functions import delta_cp_and_e_ht # print(np.shape(raw_time)) # exit() (epsht, delta_cp, f_epsht, f_delta_cp, c_puv) = \
def main(): lines = getdata() intersections = getintersections(lines[0], lines[1]) print(leaststeps(lines, intersections))
def main(): data = getdata("input.txt") total = 0 for entry in data: total += calcfuel(entry) return total